971 resultados para Langmuir monolayers
Resumo:
Different sizes of Frechet-type dendrons with a thiol group at the focal point were synthesized, well characterized, and used as building blocks for the preparation of self-assembled monolayers (SAMs) on metal surfaces. From the studies of the kinetic process of dendron thiol self-assembling on gold, it is shown that the dendron thiol assembling proceeds with different adsorption rates depending on the assembly time. In contrast to normal alkanethiols forming highly molecular structures on metal surfaces, the SAMs of polyether dendron form patterned surfaces with nanometer-sized features and in long-range order. It is found that the patterned stripes are closely related to the size of the dendron, and the patterned stripes can be improved by thermal annealing.
Resumo:
Controlled crystallization of BaF2 under two different kinds of monolayers, octadecylamine [CH3(CH2)(17)NH2] and hexadecanol [CH3(CH2)(14)CH2OH], has been studied by using x-ray diffraction (XRD) and scanning electron microscope. It was found that the monolayer headgroup, the degree of ionization of the headgroup, etc., had a complicated effect on the selectivity of monolayers for crystal and on the morphology and orientation of crystals grown under the compressed monolayers. At pH = 7.0, XRD analysis showed that (100)-oriented BaF2 crystals were formed under the octadecylamine monolayer, while several kinds of crystals were found under the hexadecanol monolayer. In comparison, at pH = 8.5, both (100)-oriented BaF2 and (111)-oriented Ba(NO3)(2) crystals were obtained under the monolayer of octadecylamine. However, crystals formed under hexadecanol monolayer consist of BaF2, Ba(NO3)(2), etc. The detailed mechanism for crystallization was discussed in terms of the specific interaction and lattice matching between the monolayer headgroup and the nucleating species.
Resumo:
The possibility of the formation of Langmuir-Blodgett (LB) films with dimethyldioctadecylammonium (DODA) after the addition of cobalt(II)-substituted Dawson-type tungstodiphosphate anion (briefed as (H2O)(CoP2W17O618-)-P-11) in the subphase has been explored. Marked modifications of the compression isotherms are observed when this anion is dissolved in the subphase, which demonstrates that the polyanions interact with the monolayers. LB films have been readily obtained from this system. The adsorption Fourier transform IR (FT IR) spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD) and cyclic voltammetry (CV) have been used to investigate the morphological and molecular structure of the deposited film. The FT IR results showed the presence of the polyanion within the LB films, and the shift for its characteristic bands may be related to the presence of positively charged DODA. AFM measurement reveals that the LB films of DODA/(H2O)(CoP2W17O618)-P-II are regularly and uniformly deposited on the substrate. XRD experiments prove that the lamellar structure of the LB films of DODA/(H2O)(CoP2W17O618-)-P-II is well-defined. The LB films of DODA/(H2O)(CoP2W17O618-)-P-II immobilized onto an indium-oxide (ITO) glass, in aqueous solutions of pH 2.0-5.0, show quite facile redox reactions even for multilayers. All the experiments carried out in the present study suggest that the new materials of heteropolyanions can be formed by LB techniques and beneficial physicochemical properties of heteropolyanions can be maintained/enhanced through molecular-level design. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
An octadecanethiol monolayer was formed on an aqueous gold sols subphase, it's LB films were characterized by means of pi-A isotherms, TEM (transmission electron microscopy), XRD (X-ray diffraction) and UV-Vis spectroscopy. (C) 1998 Elsevier Science Limited. All rights reserved.
Resumo:
Terbium(III) stearoylanthranilate has been prepared as a high property Z-type Langmuir-Blodgett (LB) film on various substrates by a vertical transfer process. The UV-visible absorption spectra and the low angle X-ray diffraction peaks have been collected in order to investigate the molecular arrangement and aggregation in the LB films. The average molecular orientation in multilayer stacking was determined by Attenuated Total Reflection Spectroscopy. The influence of the chemical environment of terbium within the LB films on the luminescence properties has been discussed. (C) 1997 Elsevier Science S.A.
Resumo:
Monolayers of porphyrin and phthalocyanine at the air-water interface were studied by means of film balance and Brewster angle microscopy (BAM). Results showed that the final point of compression isotherm and that of recompression isotherm were coincident or not coincident depending on the target pressures. Results were discussed in terms of the morphology of monolayers observed by BAM.
Resumo:
The collapse behaviour of phthalocyanine monolayers at the air-water interface was studied by means of compression-expansion isotherms. Measurements of two cycles of compression-expansion isotherms of copper tetrakis (4'-benzyloxy-4-phenylsulfonylphenoxy) phthalocyanine showed that the difference in the area per molecule at target pressure between the first cycle and the second cycle was dependent on the target pressure. This difference was used to identify the collapse of monolayers at the air-water interface. The transfer behaviour of monolayers at the air-water interface onto a substrate at different target pressures was also studied.
Resumo:
The spreading behavior of poly(2-acrylamidohexadecylsulfonic acid-co-styrene) (PAMC16SSt) random co-polymers with various compositions was investigated by measurements of the surface pressure-area (pi-A) isotherms. The random copolymers formed stable cond
Resumo:
A number of synthetic and natural source porphyrins without long alkyl chains have been examined in the form of monolayers and multilayers on solid substrates. These compounds formed stable solid condensed films with measured molecular areas compatible with a vertical or tilted orientation of these molecules on the substrate. Spectral study and fluorescence lifetime measurement, in particular, revealed the formation of aggregates as the main species in these films.
Resumo:
N-Methyl-N'-hexadecylviologen (C16MV) has been the subject of several electrochemical and spectroelectrochemical studies which characterized the species present in various redox states for C16MV monolayers on silver electrode surfaces. Both self-assembled monolayers (SA) and Langmuir-Blodgett (LB) transferred systems have been studied. These indicated inconsistencies regarding the presence or absence of splitting of the first reduction peak in its cyclic voltammogram (CV). The present study demonstrates the important influence of the specific anionic species present in the supporting electrolyte. Splitting may or may not take place, depending on the size and relative strength of the adsorption of specific anions contributed by the supporting electrolyte. Small, strongly adsorbing anions such as iodide produced peak splitting in the CV of C16MV monolayers; bulky but weakly adsorbing anions such as perchlorate may disrupt the ordered structure of monolayers but produce no splitting. Ancillary data provided by surface enhanced Raman spectroscopy (SERS) was consistent with the electrochemical measurements.
Resumo:
The binding of the electroactive hexaammineruthenium (III) complex ions to anionic self-assembled monolayers (SAMs) has been investigated by means of chronocoulometry and ac voltammetry. From chronocoulometric data recorded in 10-2 M LiClO4 containing different [Ru(NH3)6]3+ concentrations, we have established the adsorption isotherm of [Ru(NH3)6]3+ on a compact monolayer of 2-mercaptobenzimidazole-5-sulfonate (MBIS) self-assembled on Au(1 1 1). The data were satisfactorily fitted to the linearized Langmuir adsorption isotherm and a binding constant of 4.0 (±0.4) × 106 M-1 has been determined. The electrostatic binding of [Ru(NH3)6]3+ to a dilute PNA-DNA monolayer formed after hybridization on a PNA-modified gold electrode by self-assembly from a mixed solution of mercaptobutan-1-ol and PNA oligonucleotides has been studied by ac voltammetry. The admittance of the PNA-modified electrode after hybridization with complementary DNA was measured in 0.01 M Tris-HCl buffer containing different [Ru(NH3)6]3+ concentrations. Based on these data, a binding constant of [Ru(NH3)6]3+ to the surface-confined PNA-DNA duplex was derived from the Langmuir isotherm and amounts to 2.9 (±0.3) × 105 M-1. As the interactions between [Ru(NH3)6]3+ and the immobilized PNA-DNA hybrids on the gold surface are essentially electrostatic, the adsorption of the highly charged cationic redox complex at low concentrations to the negatively charged PNA-DNA modified surface is in large competition with other monovalent cations present in the electrolyte at higher concentrations. The influence of competing sodium cations was thus studied by adding different NaCl concentrations in the 0.01 M Tris-HCl electrolyte. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate that interferometric lithography provides a fast, simple approach to the production of patterns in self-assembled monolayers (SAMs) with high resolution over square centimeter areas. As a proof of principle, two-beam interference patterns, formed using light from a frequency-doubled argon ion laser (244 nm), were used to pattern methyl-terminated SAMs on gold, facilitating the introduction of hydroxyl-terminated adsorbates and yielding patterns of surface free energy with a pitch of ca. 200 nm. The photopatterning of SAMs on Pd has been demonstrated for the first time, with interferometric exposure yielding patterns of surface free energy with similar features sizes to those obtained on gold. Gold nanostructures were formed by exposing SAMs to UV interference patterns and then immersing the samples in an ethanolic solution of mercaptoethylamine, which etched the metal substrate in exposed areas while unoxidized thiols acted as a resist and protected the metal from dissolution. Macroscopically extended gold nanowires were fabricated using single exposures and arrays of 66 nm gold dots at 180 nm centers were formed using orthogonal exposures in a fast, simple process. Exposure of oligo(ethylene glycol)-terminated SAMs to UV light caused photodegradation of the protein-resistant tail groups in a substrate-independent process. In contrast to many protein patterning methods, which utilize multiple steps to control surface binding, this single step process introduced aldehyde functional groups to the SAM surface at exposures as low as 0.3 J cm(-2), significantly less than the exposure required for oxidation of the thiol headgroup. Although interferometric methods rely upon a continuous gradient of exposure, it was possible to fabricate well-defined protein nanostructures by the introduction of aldehyde groups and removal of protein resistance in nanoscopic regions. Macroscopically extended, nanostructured assemblies of streptavidin were formed. Retention of functionality in the patterned materials was demonstrated by binding of biotinylated proteins.
Resumo:
To obtain the surface stress changes due to the adsorption of metal monolayers onto metallic surfaces, a new model derived from thermodynamic considerations is presented. Such a model is based on continuum Monte Carlo simulations with embedded atom method potentials in the canonical ensemble, and it is extended to consider the behavior on different islands adsorbed onto (111) substrate surfaces. Homoepitaxial and heteroepitaxial systems are studied. Pseudomorphic growth is not observed for small metal islands with considerable positive misfit with the substrate. Instead, the islands become compressed upon increase of their size. A simple model is proposed to interpolate between the misfits of atoms in small islands and the pseudomorphic behavior of the monolayer.
Resumo:
Modifying the surfaces of metal nanoparticles with self-assembled monolayers of functionalized thiols provides a simple and direct method to alter their surface properties. Mixed self-assembled monolayers can extend this approach since, in principle, the surfaces can be tuned by altering the proportion of each modifier that is adsorbed. However, this works best if the composition and microstructure of the monolayers can be controlled. Here, we have modified preprepared silver colloids with binary mixtures of thiols at varying concentrations and modifier ratios. Surface-enhanced Raman spectroscopy was then used to determine the effect of altering these parameters on the composition of the resulting mixed monolayers. The data could be explained using a new model based on a modified competitive Langmuir approach. It was found that the composition of the mixed monolayer only reflected the ratio of modifiers in the feedstock when the total amount of modifier was sufficient for approximately one monolayer coverage. At higher modifier concentrations the thermodynamically favored modifier dominated, but working at near monolayer concentrations allowed the surface composition to be controlled by changing the ratios of modifiers. Finally, a positively charged porphyrin probe molecule was used to investigate the microstructure of the mixed monolayers, i.e., homogeneous versus domains. In this case the modifier domains were found to be <2 nm.
Resumo:
Durant les dernières décennies, la technique Langmuir-Blodgett (LB) s’est beaucoup développée dans l’approche « bottom-up » pour la création de couches ultra minces nanostructurées. Des patrons constitués de stries parallèles d’environ 100 à 200 nm de largeur ont été générés avec la technique de déposition LB de monocouches mixtes de 1,2-dilauroyl-sn-glycéro-3-phosphatidylcholine (DLPC) et de 1,2-dipalmitoyl-sn-glycéro-3-phosphatidylcholine (DPPC) sur des substrats de silicium et de mica. Afin d’amplifier la fonctionnalité de ces patrons, la 1-palmitoyl-2-(16-(S-methyldithio)hexadécanoyl)-sn-glycéro-3-phosphatidylcholine (DSDPPC) et la 1-lauroyl-2-(12-(S-methyldithio)dodédecanoyl)-sn-glycéro-3-phosphatidylcholine (DSDLPC) ont été employées pour la préparation de monocouches chimiquement hétérogènes. Ces analogues de phospholipide possèdent un groupement fonctionnel méthyldisulfide qui est attaché à la fin de l’une des chaînes alkyles. Une étude exhaustive sur la structure de la phase des monocouches Langmuir, Langmuir-Schaefer (LS) et LB de la DSDPPC et de la DSDLPC et leurs différents mélanges avec la DPPC ou la DLPC est présentée dans cette thèse. Tout d’abord, un contrôle limité de la périodicité et de la taille des motifs des stries parallèles de DPPC/DLPC a été obtenu en variant la composition lipidique, la pression de surface et la vitesse de déposition. Dans un mélange binaire de fraction molaire plus grande de lipide condensé que de lipide étendu, une vitesse de déposition plus lente et une plus basse pression de surface ont généré des stries plus continues et larges. L’addition d’un tensioactif, le cholestérol, au mélange binaire équimolaire de la DPPC/DLPC a permis la formation de stries parallèles à de plus hautes pressions de surface. La caractérisation des propriétés physiques des analogues de phospholipides a été nécessaire. La température de transition de phase de la DSDPPC de 44.5 ± 1.5 °C comparativement à 41.5 ± 0.3 °C pour la DPPC. L’isotherme de la DSDPPC est semblable à celui de la DPPC. La monocouche subit une transition de phase liquide-étendue-à-condensée (LE-C) à une pression de surface légèrement supérieure à celle de la DPPC (6 mN m-1 vs. 4 mN m-1) Tout comme la DLPC, la DSDLPC demeure dans la phase LE jusqu’à la rupture de la monocouche. Ces analogues de phospholipide existent dans un état plus étendu tout au long de la compression de la monocouche et montrent des pressions de surface de rupture plus basses que les phospholipides non-modifiés. La morphologie des domaines de monocouches Langmuir de la DPPC et de la DSDPPC à l’interface eau/air a été comparée par la microscopie à angle de Brewster (BAM). La DPPC forme une monocouche homogène à une pression de surface (π) > 10 mN/m, alors que des domaines en forme de fleurs sont formés dans la monocouche de DSDPPC jusqu’à une π ~ 30 mN m-1. La caractérisation de monocouches sur substrat solide a permis de démontrer que le patron de stries parallèles préalablement obtenu avec la DPPC/DLPC était reproduit en utilisant des mélanges de la DSDPPC/DLPC ou de la DPPC/DSDLPC donnant ainsi lieu à des patrons chimiquement hétérogènes. En général, pour obtenir le même état de phase que la DPPC, la monocouche de DSDPPC doit être comprimée à de plus hautes pressions de surface. Le groupement disulfide de ces analogues de phospholipide a été exploité, afin de (i) former des monocouches auto-assemblées sur l’or et de (ii) démontrer la métallisation sélective des terminaisons fonctionnalisées des stries. La spectrométrie de photoélectrons induits par rayons X (XPS) a confirmé que la monocouche modifiée réagit avec la vapeur d’or pour former des thiolates d’or. L’adsorption de l’Au, de l’Ag et du Cu thermiquement évaporé démontre une adsorption préférentielle de la vapeur de métal sur la phase fonctionnalisée de disulfide seulement à des recouvrements sub-monocouche.