982 resultados para Landscape pattern
Resumo:
In west-central Texas, USA, abatement efforts for the gray fox (Urocyon cinereoargenteus) rabies epizootic illustrate the difficulties inherent in large-scale management of wildlife disease. The rabies epizootic has been managed through a cooperative oral rabies vaccination program (ORV) since 1996. Millions of edible baits containing a rabies vaccine have been distributed annually in a 16-km to 24-km zone around the perimeter of the epizootic, which encompasses a geographic area >4 x 105 km2. The ORV program successfully halted expansion of the epizootic into metropolitan areas but has not achieved the ultimate goal of eradication. Rabies activity in gray fox continues to occur periodically outside the ORV zone, preventing ORV zone contraction and dissipation of the epizootic. We employed a landscape-genetic approach to assess gray fox population structure and dispersal in the affected area, with the aim of assisting rabies management efforts. No unique genetic clusters or population boundaries were detected. Instead, foxes were weakly structured over the entire region in an isolation by distance pattern. Local subpopulations appeared to be genetically non-independent over distances >30 km, implying that long-distance movements or dispersal may have been common in the region. We concluded that gray foxes in west-central Texas have a high potential for long-distance rabies virus trafficking. Thus, a 16-km to 24-km ORV zone may be too narrow to contain the fox rabies epizootic. Continued expansion of the ORV zone, although costly, may be critical to the long-term goal of eliminating the Texas fox rabies virus variant from the United States.
Resumo:
Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Vaquero AR, Ferreira NE, Omae SV, Rodrigues MV, Teixeira SK, Krieger JE, Pereira AC. Using gene-network landscape to dissect genotype effects of TCF7L2 genetic variant on diabetes and cardiovascular risk. Physiol Genomics 44: 903-914, 2012. First published August 7, 2012; doi:10.1152/physiolgenomics.00030.2012.-The single nucleotide polymorphism (SNP) within the TCF7L2 gene, rs7903146, is, to date, the most significant genetic marker associated with Type 2 diabetes mellitus (T2DM) risk. Nonetheless, its functional role in disease pathology is poorly understood. The aim of the present study was to investigate, in vascular smooth muscle cells from 92 patients undergoing aortocoronary bypass surgery, the contribution of this SNP in T2DM using expression levels and expression correlation comparison approaches, which were visually represented as gene interaction networks. Initially, the expression levels of 41 genes (seven TCF7L2 splice forms and 40 other T2DM relevant genes) were compared between rs7903146 wild-type (CC) and T2DM-risk (CT + TT) genotype groups. Next, we compared the expression correlation patterns of these 41 genes between groups to observe if the relationships between genes were different. Five TCF7L2 splice forms and nine genes showed significant expression differences between groups. RXR alpha gene was pinpointed as showing the most different expression correlation pattern with other genes. Therefore, T2DM risk alleles appear to be influencing TCF7L2 splice form's expression in vascular smooth muscle cells, and RXR alpha gene is pointed out as a treatment target candidate for risk reduction in individuals with high risk of developing T2DM, especially individuals harboring TCF7L2 risk genotypes.
Resumo:
The effects of habitat configuration on species persistence are predicted to be most apparent when remaining habitat cover is below 30%. We tested this prediction by comparing vertebrate communities in 21 landscapes located in the southern Amazonia, including 7 control landscapes (similar to 100% of forest cover) and 14 fragmented landscapes (4 x 4 km). The fragmented landscapes retained similar proportions of forest (similar to 25%), but had contrasting configurations, resulting from two different deforestation patterns: the "fish-bone pattern" common in small properties, and the large-property pattern generally used by large ranchers. Vertebrates were surveyed in all landscapes in February-July 2009 with interviews (n = 150). We found a significant difference in reported species richness among the fish-bone, large-property, and control areas (mean = 29.3, 38.8 and 43.5 respectively). Control areas and large-properties tended to have a higher number of specialist species (mean = 13.7, and 11.7, respectively), when compared with the fish-bone pattern (5.1). Vertebrate community composition in the control and large-properties was more similar to one another than to those of the fish-bone landscapes. The number of fragments was the main factor affecting the persistence of species, being negatively associated with specialist species richness. Species richness was also positively related with the size of the largest fragment structurally connected to the studied landscapes (i.e., a regional scale effect). Our results demonstrated that the large-property pattern, which results in less fragmented landscapes, can maintain a more diverse community of large vertebrates, including top predators, which are considered fundamental for maintaining ecosystem integrity. These results support the hypothesis that landscape configuration contributes to the persistence and/or extirpation of species.
Resumo:
The Zagros oak forests in Western Iran are critically important to the sustainability of the region. These forests have undergone dramatic declines in recent decades. We evaluated the utility of the non-parametric Random Forest classification algorithm for land cover classification of Zagros landscapes, and selected the best spatial and spectral predictive variables. The algorithm resulted in high overall classification accuracies (>85%) and also equivalent classification accuracies for the datasets from the three different sensors. We evaluated the associations between trends in forest area and structure with trends in socioeconomic and climatic conditions, to identify the most likely driving forces creating deforestation and landscape structure change. We used available socioeconomic (urban and rural population, and rural income), and climatic (mean annual rainfall and mean annual temperature) data for two provinces in northern Zagros. The most correlated driving force of forest area loss was urban population, and climatic variables to a lesser extent. Landscape structure changes were more closely associated with rural population. We examined the effects of scale changes on the results from spatial pattern analysis. We assessed the impacts of eight years of protection in a protected area in northern Zagros at two different scales (both grain and extent). The effects of protection on the amount and structure of forests was scale dependent. We evaluated the nature and magnitude of changes in forest area and structure over the entire Zagros region from 1972 to 2009. We divided the Zagros region in 167 Landscape Units and developed two measures— Deforestation Sensitivity (DS) and Connectivity Sensitivity (CS) — for each landscape unit as the percent of the time steps that forest area and ECA experienced a decrease of greater than 10% in either measure. A considerable loss in forest area and connectivity was detected, but no sudden (nonlinear) changes were detected at the spatial and temporal scale of the study. Connectivity loss occurred more rapidly than forest loss due to the loss of connecting patches. More connectivity was lost in southern Zagros due to climatic differences and different forms of traditional land use.
Resumo:
We examined the consequences of the spatial heterogeneity of atmospheric ammonia (NH3) by measuring and modelling NH3 concentrations and deposition at 25 m grid resolution for a rural landscape containing intensive poultry farming, agricultural grassland, woodland and moorland. The emission pattern gave rise to a high spatial variability of modelled mean annual NH3 concentrations and dry deposition. Largest impacts were predicted for woodland patches located within the agricultural area, while larger moorland areas were at low risk, due to atmospheric dispersion, prevailing wind direction and low NH3 background. These high resolution spatial details are lost in national scale estimates at 1 km resolution due to less detailed emission input maps. The results demonstrate how the spatial arrangement of sources and sinks is critical to defining the NH3 risk to semi-natural ecosystems. These spatial relationships provide the foundation for local spatial planning approaches to reduce environmental impacts of atmospheric NH3.
Resumo:
Conceptual frameworks of dryland degradation commonly include ecohydrological feedbacks between landscape spatial organization and resource loss, so that decreasing cover and size of vegetation patches result in higher water and soil losses, which lead to further vegetation loss. However, the impacts of these feedbacks on dryland dynamics in response to external stress have barely been tested. Using a spatially-explicit model, we represented feedbacks between vegetation pattern and landscape resource loss by establishing a negative dependence of plant establishment on the connectivity of runoff-source areas (e.g., bare soils). We assessed the impact of various feedback strengths on the response of dryland ecosystems to changing external conditions. In general, for a given external pressure, these connectivity-mediated feedbacks decrease vegetation cover at equilibrium, which indicates a decrease in ecosystem resistance. Along a gradient of gradual increase of environmental pressure (e.g., aridity), the connectivity-mediated feedbacks decrease the amount of pressure required to cause a critical shift to a degraded state (ecosystem resilience). If environmental conditions improve, these feedbacks increase the pressure release needed to achieve the ecosystem recovery (restoration potential). The impact of these feedbacks on dryland response to external stress is markedly non-linear, which relies on the non-linear negative relationship between bare-soil connectivity and vegetation cover. Modelling studies on dryland vegetation dynamics not accounting for the connectivity-mediated feedbacks studied here may overestimate the resistance, resilience and restoration potential of drylands in response to environmental and human pressures. Our results also suggest that changes in vegetation pattern and associated hydrological connectivity may be more informative early-warning indicators of dryland degradation than changes in vegetation cover.
Resumo:
New archaeological survey data are combined with previous evidence to examine the rural landscape during the Iberian Iron Age in the Valencia region of eastern Spain. One goal was to understand the settlement pattern and agricultural intensification through manuring. The second objective was to address the socioeconomic aspects of changes in the landscape. It is possible to trace the emergence of a hierarchical settlement pattern in the Iberian Iron Age in which large fortified settlements carried out the most important functions of control and exploitation of the territory, extending their authority over small rural villages and farmsteads. This pattern is associated with the complex socioeconomic structures and political organization of early Iberian states.
Resumo:
This study analyses the effect of successional stage after farmland terrace abandonment on post-fire plant recovery in a Mediterranean landscape. Specific objectives of the study were to (1) compare fuel characteristics and fire severity in three successional stages after farmland abandonment – dry grassland, dense shrubland and pine stands; (2) analyse the effect of pre-fire successional stage and fire severity on vegetation recovery and (3) analyse the relative vulnerability (i.e. potential for ecosystem shift and soil degradation) to wildfires of the successional stages. We assessed 30 abandoned terraces (15 unburned and 15 burned), with diverse successional stages, on the Xortà Range (south-east Spain). Post-fire recovery was measured 1, 4 and 7 years after fire. The successional stages varied in aboveground biomass, litter amount, vertical structure and continuity of plant cover, and flammability. Dry grassland showed the lowest fire severity, whereas no differences in severity were found between shrubland and pine stands. One year after fire, plant cover was inversely related to fire severity; this relationship attenuated with time after fire. Post-fire recovery of pine stands and shrubland led in both cases to shrublands, contributing to landscape homogenisation. The pine stands showed the largest changes in composition due to fire and the lowest post-fire plant recovery – a sign of high vulnerability to fire.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Habitat loss and fragmentation have been implicated as driving forces behind recent waves of extinction. The regional landscape where this study occurred is a mosaic of forest and grassland, and therefore provides an ideal system with which to investigate the implications of habitat patchiness for the distribution and ecology of organisms. Here I describe patterns of amphibian and reptile distribution among and within habitats at the study site, investigate associations between habitat and community structure, describe nested subset patterns on forest islands, and quantify the relationship between body size and density across ecological scales and taxonomic groups. ^ Species richness did not vary across habitats, between forest island isolation classes or between island edges and cores. In contrast, species composition varied at all three ecological scales, reflecting differences in the distribution of both forest and open-habitat affiliated species. Species composition was associated with multivariate habitat profiles, with differences occurring along the isolation gradient of forest islands rather than the area gradient. The relationship between species composition and habitat was stronger for amphibians than for reptiles, a pattern that may be ascribed to physiological differences between the two groups. Analysis of nested subset pattern of community structure indicated that species composition of islands is nested as a function of isolation. Four species whose distribution on forest islands seems to be dispersal-limited drive the relationship between nestedness and isolation. Although there were several examples of shifts in body size across spatial scales and taxonomic groups, body size was not associated with density as predicted by theory, which may reflect differences between real and habitat islands, or differential responses of poikilothermic vertebrates to changes in density relative to homeotherms. ^ Taken together, the strongest result to emerge from this research is the importance of isolation, rather than area, on community structure in this system. Much evidence suggested that different ecological groups of species show distinct patterns of distribution both within and among habitat types. This suggests that species distributions at this site are not the result of 'neutral' processes at the community level, but rather reflect fundamental differences in the ecology of component species. ^
Does landscape context affect habitat value? The importance of seascape ecology in back-reef systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.
Resumo:
Phosphine resistance in Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) has evolved through changes to enzymes involved in basic metabolic pathways. These changes impose metabolic stress and could affect energy-demanding behaviours. We therefore tested whether phosphine resistance alleles impact the movement of these insects in their quest for new resources. We measured walking and flight parameters of four T. castaneum genotypes: (1) a field-derived population, (2) a laboratory cultured, phosphine-susceptible reference strain, (3) a laboratory cultured, phosphine-resistant reference strain, and (4) a resistant introgressed strain that is almost identical genetically to the susceptible population. The temporal pattern of flight was identical across all populations, but resistant beetles took flight significantly less, walked more slowly, and located resources less successfully than did susceptible beetles. Also, the field-derived beetles (proved not to be carrying resistance genes) walked significantly faster and more directly towards food resources, and had a higher propensity for flight when compared to the susceptible laboratory beetles. These negative effects suggest survival of beetles with the resistance alleles will be compromised should they leave phosphine application sites. The field for selection therefore extends beyond the site at which phosphine fumigant imposed its effect, and other mutations are also likely to be affected in this way.
Resumo:
O fogo é um processo frequente nas paisagens do norte de Portugal. Estudos anteriores mostraram que os bosques de azinheira (Quercus rotundifolia) persistem após a passagem do fogo e ajudam a diminuir a sua intensidade e taxa de propagação. Os principais objetivos deste estudo foram compreender e modelar o efeito dos bosques de azinheira no comportamento do fogo ao nível da paisagem da bacia superior do rio Sabor, localizado no nordeste de Portugal. O impacto dos bosques de azinheira no comportamento do fogo foi testado em termos de área e configuração de acordo com cenários que simulam a possível distribuição destas unidades de vegetação na paisagem, considerando uma percentagem de ocupação da azinheira de 2.2% (Low), 18.1% (Moderate), 26.0% (High), e 39.8% (Rivers). Estes cenários tiveram como principal objetivo testar 1) o papel dos bosques de azinheira no comportamento do fogo e 2) de que forma a configuração das manchas de azinheira podem ajudar a diminuir a intensidade da linha de fogo e área ardida. Na modelação do comportamento do fogo foi usado o modelo FlamMap para simular a intensidade de linha do fogo e taxa de propagação do fogo com base em modelos de combustível associados a cada ocupação e uso do solo presente na área de estudo, e também com base em fatores topográficos (altitude, declive e orientação da encosta) e climáticos (humidade e velocidade do vento). Foram ainda usados dois modelos de combustível para a ocupação de azinheira (áreas interiores e de bordadura), desenvolvidos com base em dados reais obtidos na região. Usou-se o software FRAGSATS para a análise dos padrões espaciais das classes de intensidade de linha do fogo, usando-se as métricas Class Area (CA), Number of Patches (NP) e Large Patches Index (LPI). Os resultados obtidos indicaram que a intensidade da linha de fogo e a taxa de propagação do fogo variou entre cenários e entre modelos de combustível para o azinhal. A intensidade média da linha de fogo e a taxa média de propagação do fogo decresceu à medida que a percentagem de área de bosques de azinheira aumentou na paisagem. Também foi observado que as métricas CA, NP e LPI variaram entre cenários e modelos de combustível para o azinhal, decrescendo quando a percentagem de área de bosques de azinheira aumentou. Este estudo permitiu concluir que a variação da percentagem de ocupação e configuração espacial dos bosques de azinheira influenciam o comportamento do fogo, reduzindo, em termos médios, a intensidade da linha de fogo e a taxa de propagação, sugerindo que os bosques de azinhal podem ser usados como medidas silvícolas preventivas para diminuir o risco de incêndio nesta região.
Resumo:
The trees, hedgerows and woods are current configuration of the tree network in several ecological regions of the world. In Trás–os–Montes region, Northeast of Portugal, they are a traditional component of Terra fria landscape and they could be seen in several forms: scatter trees, fencerows, small woodlots, riparian buffer strips, among others. The extensive livestock systems in this region are based on a set of circuits across the landscape. In this practice, flocks interacts with these structures using them for different functions inducing an influence on the itineraries. Our purpose will be focused on the woody features of landscape regarding their configurations, abundance and spacial distribution; in order to examine how the grazing systems depends on the currency of these formations; particularly how species flocks behaviors are related on. Depending on spatial data, The investigation attain to compare the tree network within the agriculture matrix, to the grazed territory crossed by flocks. From the other side, the importance of spatial data on interpreting the issue by suggesting different parameter that may influence the circuits. The recognition of the pressure exerciced by the occurence of the woody structures on the grazed circuits is possible. We believe that the role of these woody structures features in supporting the tradicional silvopastoral systems has been sufficiently strong for change their distribution pattern.