984 resultados para Landscape Evolution
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A região do Baixo Tocantins - ilha do Marajó é excelente local para se realizar um estudo de integração de dados geológicos e biológicos visando-se a compreensão dos processos de diversificação de espécies. Foram estimados parâmetros de genética populacional e realizadas análises filo genéticas das populações amostradas utilizando-se o gene ND2, relacionando-os com o cenário geológico proposto para a evolução da região. Foram utilizadas inferência bayesiana e máxima verossimilhança para reconstrução de filogenias intraespecíficas, redes de haplótipos e o teste de desvio de neutralidade R2, AMOVA, F ST e Nm para as análises populacionais, para três espécies de aves Passeriformes: Xiphorhynchus spixii e Glyphorynchs spirurus (Dendrocolaptidae) e Willisornis poecilinotus (Thamnophilidae). As populações de X spixii não apresentaram estruturação geográfica, exibindo altos níveis de fluxo gênico entre elas. A árvore filogenética de G. spirurus apresentou um grupo de haplótipos únicos da ilha do Marajó (1M) e um grupo irmão contendo haplótipos pertencentes às áreas de endemismo Xingu (XI), Belém (BE) e 1M. Essa topologia indica um aparente contato secundário recente na 1M entre uma população isolada e endêmica da própria ilha com populações do continente (XI). A árvore obtida para W poecilinotus apresentou uma topologia semelhante àquela de G. spirurus, indicando que a formação da 1M provavelmente atuou de maneira similar em diferentes espécies, com similares capacidades de dispersão, gerando padrões filogeográficos concordantes. Comparando--se as três espécies, concluímos que X spixii possui maior capacidade de dispersão respondendo de maneira distinta ao mesmo efeito vicariante. Estimativas do relógio molecular para o nó que separa o grupo de haplótipos endêmicos da ilha do Marajó mostram que tanto as populações de G. spirurus, quanto às de W. poecilinotus são muito mais antigas que os eventos que levaram à separação total da 1M em relação ao continente (aproximadamente 10.000 anos AP), com uma idade estimada aproximadamente 747.000 anos AP para G. spirurus e 798.000 anos AP para W. poecilinotus, indicando que outros processos vicariantes anteriores à separação total da Ilha do Marajó poderiam ter separado essas populações endêmicas da ilha.
Resumo:
O presente estudo foi realizado em uma área de transição savana-floresta do norte do estado de Roraima, tendo como objetivo principal caracterizar os regolitos dispostos ao longo da paisagem e inferir sobre a evolução da paisagem durante o Holoceno tardio e mesmo no presente. Assim, foram selecionadas quatro topossequências representativas dos padrões geomorfológicos, pedológicos e botânicos ocorrentes na paisagem, ao longo das quais foram coletadas sistematicamente amostras de solos e sedimentos. Essas amostras foram analisadas quanto às suas características granulométricas, mineralógicas, químicas e cronológicas. Os resultados revelaram uma paisagem dominada por solos arenosos a sílticos constituídos essencialmente de quartzo e caulinita e acessoriamente muscovita, goethita, sillimanita e albita. Os altos teores elevados de SiO2 confirmam o caráter essencialmente quartzoso desses regolitos. As composições mineralógicas e químicas desses materiais indicam proveniência de rochas metamórficas e de lateritos da região que, diante das condições climáticas quentes e úmidas preponderantes durante os últimos 1550 anos antes do presente (AP), tem sofrido intenso intemperismo químico e lixiviação. A evolução da paisagem é dinamizada pela erosão hídrica das encostas e o consequente assoreamento dos vales de veredas, levando ao aplainamento da paisagem e desenvolvimento de extensas planícies arenosas a partir dos solos areno-sílticos dos interflúvios.
Resumo:
The objective of this research was to conduct an analysis of multitemporal landscape Ipanema National Forest, located in the municipalities of Iperó, Capela do Alto and Araçoiaba da Serra – São Paulo estate, Brazil, considering the scenarios of 1965, 2007 and 2011. The multitemporal analysis, using aerial photographs and satellite images, contributed to the contextualization and spatialization of the evolution of the landscape area. Through analysis interpretation of the images, performed by means of supervised classification were obtained thematic maps of the area, equivalent to approximately 53 km2. Through geoprocessing techniques, especially Geographic Information Systems, it was possible the integration and manipulation of data, both spatial and statistical, allowing integrated analysis of data from the entire area of the National Forest of Ipanema. As the main result, we found that the Ipanema National Forest is in landscape evolution positive, with those 46 years examined the increase of native heavy foliage areas. Increasing from 7.1 km2 of the total area of dense vegetation in 1965 to 35.9 km2 in 2011. Overall, it was possible to realize a scenario landscape quite optimistic about the evolution of forest conservation area
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Landscape is the result of interaction between tectonic, weathering and pedogenetic processes, so it is necessary to understand the morphogenesis and relate it to the landforms and landscape. Therefore, this project comprises a geomorphological characterization of some areas associated with the fault zones of Taubaté Basin, at the surroundings of the cities from São José dos Campos to Taubaté SP, emphasizing the Quaternary landscape evolution, where the normal faults played an important role in controling and they were originated, mostly, from the reactivation of Precambrian fault zones by tectonic action. The rift valley scenario is highlighted in the region, identifying the sharp relief from the basin boundary, featuring both Serra do Mar and Serra da Mantiqueira, and a central depressed area where the Taubaté Basin is located. Deforming or modifying basin features are identified, promoting the rearrangement and conditioning of the drainage network and relief, which indicates the presence of morphostructures, conducting to the deduction of a late tectonic process
Estudo do meio físico e caracterização da capacidade de suporte natural da região de Pirassununga/SP
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Using numerical models that couple surface processes, flexural isostasy, faulting and the thermal effects of rifting, we show that fault-bounded escarpments created at rift flanks by mechanical unloading and flexural rebound have little potential to "survive" as retreating escarpments if the lower crust under the rift flank is substantially stretched. In this configuration, a drainage divide that persists through time appears landward of the initial escarpment in a position close to a secondary bulge that is created during the rifting event at a distance that depends on the flexural rigidity of the upper crust. Moreover, the migration of the escarpment to the secondary bulge occurs when the pre-rift topography dips landward, otherwise the evolution of the escarpment is guided by the pre-existing inland drainage divide. To illustrate this new mechanism for the evolution of passive margins, we study the examples of Southeastern Australia and Southeastern Brazil. We propose that a pre-existing inland drainage divide with rift related flank uplift can produce the double drainage divide observed in Southeastern Australia. On the other hand, we conclude that it is possible that the Serra do Mar escarpments on the Southeastern Brazilian margin originated as a secondary flexural bulge during rifting that persisted through time. In both cases, the retreating escarpment scenario is unlikely and the present-day margin morphology can be explained as resulting from rift-related vertical motions alone, without requiring significant post-rift "rejuvenation".
Resumo:
[EN] Granite is emplaced deep in the Earth's crust. It cools and crystallises and is subjected to thermal and magmatic events, and to recurrent stresses. It develops textures or fabrics as well as strain patterns which, as erosion brings the rock mass near the surface, find expression in various fracture sets and systems.
Resumo:
The Calabrian-Peloritani arc represents key site to unravel evolution of surface processes on top of subducting lithosphere. During the Pleistocene, in fact the arc uplifted at rate of the order of about 1mm/yr, forming high-standing low-relief upland (figure 2). Our study is focused on the relationship between tectonic and land evolution in the Sila Massif, Messina strait and Peloritani Mts. Landforms reflect a competition between tectonic, climatic, and surficial processes. Many landscape evolution models that explore feedbacks between these competing processes, given steady forcing, predict a state of erosional equilibrium, where the rates of river incision and hillslope erosion balance rock uplift. It has been suggested that this may be the final constructive stage of orogenic systems. Assumptions of steady erosion and incision are used in the interpretation of exhumation and uplift rates from different geologic data, and in the formulation of fluvial incision and hillslope evolution models. In the Sila massif we carried out cosmogenic isotopes analysis on 24 samples of modern fluvial sediments to constrain long-term (~103 yr) erosion rate averaged on the catchment area. 35 longitudinal rivers profiles have been analyzed to study the tectonic signal on the landscape evolution. The rivers analyzed exhibit a wide variety of profile forms, diverging from equilibrium state form. Generally the river profiles show at least 2 and often 3 distinct concave-up knickpoint-bounded segments, characterized by different value of concavity and steepness indices. River profiles suggest three main stages of incision. The values of ks and θ in the lower segments evidence a decrease in river incision, due probably to increasing uplift rate. The cosmogenic erosion rates pointed out that old landscape upland is eroding slowly at ~0.1 mm/yr. In the contrary, the flanks of the massif is eroding faster with value from 0.4 to 0.5 mm/yr due to river incision and hillslope processes. Cosmogenic erosion rates mach linearly with steepness indices and with average hillslope gradient. In the Messina area the long term erosion rate from low-T thermochronometry are of the same order than millennium scale cosmogenic erosion rate (1-2 mm/yr). In this part of the chain the fast erosion is active since several million years, probably controlled by extensional tectonic regime. In the Peloritani Mts apatite fission-track and (U-Th)/He thermochronometry are applied to constraint the thermal history of the basement rock. Apatite fission-track ages range between 29.0±5.5 and 5.5±0.9 Ma while apatite (U-Th)/He ages vary from 19.4 to 1.0 Ma. Most of the AFT ages are younger than the overlying terrigenous sequence that in turn postdates the main orogenic phase. Through the coupling of the thermal modelling with the stratigraphic record, a Middle Miocene thermal event due to tectonic burial is unravel. This event affected a inner-intermediate portion of the Peloritani belt confined by young AFT data (<15 Ma) distribution. We interpret this thermal event as due to an out-of–sequence thrusting occurring in the inner portion of the belt. Young (U-Th)/He ages (c. 5 Ma) record a final exhumation stage with increasing rates of denudation since the Pliocene times due to postorogenic extensional tectonics and regional uplift. In the final chapter we change the spatial scale to insert digital topography analysis and field data within a geodynamic model that can explain surface evidence produced by subduction process.
Resumo:
Throughout the alpine domain, shallow landslides represent a serious geologic hazard, often causing severe damages to infrastructures, private properties, natural resources and in the most catastrophic events, threatening human lives. Landslides are a major factor of landscape evolution in mountainous and hilly regions and represent a critical issue for mountainous land management, since they cause loss of pastoral lands. In several alpine contexts, shallow landsliding distribution is strictly connected to the presence and condition of vegetation on the slopes. With the aid of high-resolution satellite images, it's possible to divide automatically the mountainous territory in land cover classes, which contribute with different magnitude to the stability of the slopes. The aim of this research is to combine EO (Earth Observation) land cover maps with ground-based measurements of the land cover properties. In order to achieve this goal, a new procedure has been developed to automatically detect grass mantle degradation patterns from satellite images. Moreover, innovative surveying techniques and instruments are tested to measure in situ the shear strength of grass mantle and the geomechanical and geotechnical properties of these alpine soils. Shallow landsliding distribution is assessed with the aid of physically based models, which use the EO-based map to distribute the resistance parameters across the landscape.
Resumo:
In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of Asmara, the capital of Eritrea and its surrounding areas using a Landsat ETM+ imagery acquired in January 2000. The image classification methods used were maximum likelihood for the pixel-based approach and Bhattacharyya distance for the object-oriented approach available in, respectively, ArcGIS and SPRING software packages. Advantages and limitations of both approaches are presented and discussed. Classifications outputs were assessed using overall accuracy and Kappa indices. Pixel- and object-based classification methods result in an overall accuracy of 78% and 85%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.74 and 0.82, respectively. Although pixel-based approach is the most commonly used method, assessment and visual interpretation of the results clearly reveal that the object-oriented approach has advantages for this specific case-study.
Resumo:
Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels ("araneiform" terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.