883 resultados para Land use, development, and construction
Resumo:
Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.
Inherent errors in pollutant build-up estimation in considering urban land use as a lumped parameter
Resumo:
Stormwater quality modelling results is subject to uncertainty. The variability of input parameters is an important source of overall model error. An in-depth understanding of the variability associated with input parameters can provide knowledge on the uncertainty associated with these parameters and consequently assist in uncertainty analysis of stormwater quality models and the decision making based on modelling outcomes. This paper discusses the outcomes of a research study undertaken to analyse the variability related to pollutant build-up parameters in stormwater quality modelling. The study was based on the analysis of pollutant build-up samples collected from 12 road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary appreciably even within the same land use. Therefore, using land use as a lumped parameter would contribute significant uncertainties in stormwater quality modelling. Additionally, it was also found that the variability in pollutant build-up can also be significant depending on the pollutant type. This underlines the importance of taking into account specific land use characteristics and targeted pollutant species when undertaking uncertainty analysis of stormwater quality models or in interpreting the modelling outcomes.
Resumo:
Urban renewal is a significant issue in developed urban areas, with a particular problem for urban planners being redevelopment of land to meet demand whilst ensuring compatibility with existing land use. This paper presents a geographic information systems (GIS)-based decision support tool (called LUDS) to quantitatively assess land-use suitability for site redevelopment in urban renewal areas. This consists of a model for the suitability analysis and an affiliated land-information database for residential, commercial, industrial, G/I/C (government/institution/community) and open space land uses. Development has occurred with support from interviews with industry experts, focus group meetings and an experimental trial, combined with several advanced techniques and tools, including GIS data processing and spatial analysis, multi-criterion analysis, as well as the AHP method for constructing the model and database. As demonstrated in the trial, LUDS assists planners in making land-use decisions and supports the planning process in assessing urban land-use suitability for site redevelopment. Moreover, it facilitates public consultation (participatory planning) by providing stakeholders with an explicit understanding of planners' views.
Resumo:
Sustainable land use policies are concerned with the kind of world we want to live in now, and in future, and therefore inevitably involve some form of community involvement or consultation process. Hong Kong's sustainable land use planning system is well developed, involving considerable community participation and therefore serves as a good model for similarly situated cities. However, although there are several recent studies involving aspects of its land use planning system, none has yet examined the system as a whole from the perspective of sustainability. To correct this, this paper describes the land use conditions of Hong Kong from both demand and supply perspectives, reviewing its statutory and administrative procedures of land development and allocation together with the sustainable urban renewal practices involved. Problems in current sustainable land use planning and management, such as difficulties in urban renewal, the inherent shortage of land and the lengthy time involved due to need for coordination and responsiveness to multiple stakeholders, and outdated and overcomplicated administrative processes were also analyzed.
Resumo:
Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.
Resumo:
Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About one-third of crop production depends on animal pollinators, while 60-90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual models for MABES aids in identifying knowledge gaps, determining research priorities, and targeting interventions that can be applied in an adaptive management context.
Resumo:
Declining biodiversity in agro-ecosystems, caused by intensification of production or expansion of monocultures, is associated with the emergence of agricultural pests. Understanding how land-use and management control crop-associated biodiversity is, therefore, one of the key steps towards the prediction and maintenance of natural pest-control. Here we report on relationships between land-use variables and arthropod community attributes (for example, species diversity, abundance and guild structure) across a diversification gradient in a rice-dominated landscape in the Mekong delta, Vietnam. We show that rice habitats contained the most diverse arthropod communities, compared with other uncultivated and cultivated land-use types. In addition, arthropod species density and Simpson's diversity in flower, vegetable and fruit habitats was positively related to rice cover in the local landscape. However, across the landscape as a whole, reduction in heterogeneity and the amount of uncultivated cover was associated, generally, with a loss of diversity. Furthermore, arthropod species density in tillering and flowering stages of rice was positively related to crop and vegetation richness, respectively, in the local landscape. Differential effects on feeding guilds were also observed in rice-associated communities with the proportional abundance of predators increasing and the proportional abundance of detritivores decreasing with increased landscape rice cover. Thus, we identify a range of rather complex, sometimes contradictory patterns concerning the impact of rice cover and landscape heterogeneity on arthropod community attributes. Importantly, we conclude that that land-use change associated with expansion of monoculture rice need not automatically impact diversity and functioning of the arthropod community.
Resumo:
The Water Framework Directive has caused a paradigm shift towards the integrated management of recreational water quality through the development of drainage basin-wide programmes of measures. This has increased the need for a cost-effective diagnostic tool capable of accurately predicting riverine faecal indicator organism (FIO) concentrations. This paper outlines the application of models developed to fulfil this need, which represent the first transferrable generic FIO models to be developed for the UK to incorporate direct measures of key FIO sources (namely human and livestock population data) as predictor variables. We apply a recently developed transfer methodology, which enables the quantification of geometric mean presumptive faecal coliforms and presumptive intestinal enterococci concentrations for base- and high-flow during the summer bathing season in unmonitored UK watercourses, to predict FIO concentrations in the Humber river basin district. Because the FIO models incorporate explanatory variables which allow the effects of policy measures which influence livestock stocking rates to be assessed, we carry out empirical analysis of the differential effects of seven land use management and policy instruments (fiscal constraint, production constraint, cost intervention, area intervention, demand-side constraint, input constraint, and micro-level land use management) all of which can be used to reduce riverine FIO concentrations. This research provides insights into FIO source apportionment, explores a selection of pollution remediation strategies and the spatial differentiation of land use policies which could be implemented to deliver river quality improvements. All of the policy tools we model reduce FIO concentrations in rivers but our research suggests that the installation of streamside fencing in intensive milk producing areas may be the single most effective land management strategy to reduce riverine microbial pollution.
Resumo:
Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2-Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant -0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to -2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of -0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.
Resumo:
The nature and extent of pre-Columbian (pre-1492 AD) human impact in Amazonia is a contentious issue. The Bolivian Amazon has yielded some of the most impressive evidence for large and complex pre-Columbian societies in the Amazon basin, yet there remains relatively little data concerning the land use of these societies over time. Palaeoecology, when integrated with archaeological data, has the potential to fill these gaps in our knowledge. We present a 6,000-year record of anthropogenic burning, agriculture and vegetation change, from an oxbow lake located adjacent to a pre-Columbian ring-ditch in north-east Bolivia (13°15’44” S, 63°42’37” W). Human occupation around the lake site is inferred from pollen and phytoliths of maize (Zea mays L.) and macroscopic charcoal evidence of anthropogenic burning. First occupation around the lake was radiocarbon dated to ~2500 years BP. The persistence of maize in the record from ~1850 BP suggests that it was an important crop grown in the ringditch region in pre-Columbian times, and abundant macroscopic charcoal suggests that pre-Columbian land management entailed more extensive burning of the landscape than the slash-and-burn agriculture practised around the site today. The site was occupied continuously until near-modern times, although there is evidence for a decline in agricultural intensity or change in land use strategy, and possible population decline, from ~600-500 BP. The long and continuous occupation, which predates the establishment of rainforest in the region, suggests that pre-Columbian land use may have had a significant influence on ecosystem development at this site over the last ~2000 years.
Resumo:
1. Species’ distributions are likely to be affected by a combination of environmental drivers. We used a data set of 11 million species occurrence records over the period 1970–2010 to assess changes in the frequency of occurrence of 673 macro-moth species in Great Britain. Groups of species with different predicted sensitivities showed divergent trends, which we interpret in the context of land-use and climatic changes. 2. A diversity of responses was revealed: 260 moth species declined significantly, whereas 160 increased significantly. Overall, frequencies of occurrence declined, mirroring trends in less species-rich, yet more intensively studied taxa. 3. Geographically widespread species, which were predicted to be more sensitive to land use than to climate change, declined significantly in southern Britain, where the cover of urban and arable land has increased. 4. Moths associated with low nitrogen and open environments (based on their larval host plant characteristics) declined most strongly, which is also consistent with a land-use change explanation. 5. Some moths that reach their northern (leading edge) range limit in southern Britain increased, whereas species restricted to northern Britain (trailing edge) declined significantly, consistent with a climate change explanation. 6. Not all species of a given type behaved similarly, suggesting that complex interactions between species’ attributes and different combinations of environmental drivers determine frequency of occurrence changes. 7. Synthesis and applications. Our findings are consistent with large-scale responses to climatic and land-use changes, with some species increasing and others decreasing. We suggest that land-use change (e.g. habitat loss, nitrogen deposition) and climate change are both major drivers of moth biodiversity change, acting independently and in combination. Importantly, the diverse responses revealed in this species-rich taxon show that multifaceted conservation strategies are needed to minimize negative biodiversity impacts of multiple environmental changes. We suggest that habitat protection, management and ecological restoration can mitigate combined impacts of land-use change and climate change by providing environments that are suitable for existing populations and also enable species to shift their ranges.
Resumo:
This Minor Field Study was carried out during November and December in 2011 in the Mount Elgon District in Western Kenya. The objective was to examine nine small-scale farming household´s land use and socioeconomic situation when they have joined a non-governmental organization (NGO) project, which specifically targets small-scale farming households to improve land use system and socioeconomic situation by the extension of soil and water conservation measures. The survey has worked along three integral examinations methods which are mapping and processing data using GIS, semi structured interviews and literature studies. This study has adopted a theoretical approach referred to as political ecology, in which landesque capital is a central concept. The result shows that all farmers, except one, have issues with land degradation. However, the extent of the problem and also implemented sustainable soil and water conservation measures were diverse among the farmers. The main causes of this can both be linked to how the farmers themselves utilized their farmland and how impacts from the climate change have modified the terms of the farmers working conditions. These factors have consequently resulted in impacts on the informants’ socioeconomic conditions. Furthermore it was also registered that social and economic elements, in some cases, were the causes of how the farmers manage their farmland. The farmer who had no significant problem with soil erosion had invested in trees and opportunities to irrigate the farmland. In addition, it was also recorded that certain farmers had invested in particular soil and water conservation measures without any significant result. This was probably due to the time span these land measures cover before they start to generate revenue. The outcome of this study has traced how global, national and local elements exist in a context when it comes to the conditions of the farmers´ land use and their socioeconomic situation. The farmers atMt.Elgon are thereby a component of a wider context when they are both contributory to their socioeconomic situation, mainly due to their land management, and also exposed to core-periphery relationships on which the farmers themselves have no influence.
Resumo:
This paper presents a method for transforming the information of an engineering geological map into useful information for non-specialists involved in land-use planning. The method consists of classifying the engineering geological units in terms of land use capability and identifying the legal and the geologic restrictions that apply in the study area. Both informations are then superimposed over the land use and a conflict areas map is created. The analysis of these data leads to the identification of existing and forthcoming land use conflicts and enables the proposal of planning measures on a regional and local scale. The map for the regional planning was compiled at a 1:50,000 scale and encompasses the whole municipal land area where uses are mainly rural. The map for the local planning was compiled at a 1:10,000 scale and encompasses the urban area. Most of the classification and operations on maps used spatial analyst tools available in the Geographical Information System. The regional studies showed that the greater part of Analandia's territory presents appropriate land uses. The local-scale studies indicate that the majority of the densely occupied urban areas are in suitable land. Although the situation is in general positive, municipal policies should address the identified and expected land use conflicts, so that it can be further improved.
Resumo:
Landslide hazard and risk are growing as a consequence of climate change and demographic pressure. Land‐use planning represents a powerful tool to manage this socio‐economic problem and build sustainable and landslide resilient communities. Landslide inventory maps are a cornerstone of land‐use planning and, consequently, their quality assessment represents a burning issue. This work aimed to define the quality parameters of a landslide inventory and assess its spatial and temporal accuracy with regard to its possible applications to land‐use planning. In this sense, I proceeded according to a two‐steps approach. An overall assessment of the accuracy of data geographic positioning was performed on four case study sites located in the Italian Northern Apennines. The quantification of the overall spatial and temporal accuracy, instead, focused on the Dorgola Valley (Province of Reggio Emilia). The assessment of spatial accuracy involved a comparison between remotely sensed and field survey data, as well as an innovative fuzzylike analysis of a multi‐temporal landslide inventory map. Conversely, long‐ and short‐term landslide temporal persistence was appraised over a period of 60 years with the aid of 18 remotely sensed image sets. These results were eventually compared with the current Territorial Plan for Provincial Coordination (PTCP) of the Province of Reggio Emilia. The outcome of this work suggested that geomorphologically detected and mapped landslides are a significant approximation of a more complex reality. In order to convey to the end‐users this intrinsic uncertainty, a new form of cartographic representation is needed. In this sense, a fuzzy raster landslide map may be an option. With regard to land‐use planning, landslide inventory maps, if appropriately updated, confirmed to be essential decision‐support tools. This research, however, proved that their spatial and temporal uncertainty discourages any direct use as zoning maps, especially when zoning itself is associated to statutory or advisory regulations.
Resumo:
A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.