912 resultados para Lagrange multiplier principle
Resumo:
Late discovery is a term used to describe the experience of discovering the truth of one’s genetic origins as an adult. Following discovery, late discoverers face a lack of recognition and acknowledgment of their concerns from family, friends, community and institutions. They experience pain, anger, loss, grief and frustration. This presentation shares the findings of the first qualitative study of both late discovery of adoptive and donor insemination offspring (heterosexual couple use only) experiences. It is also the first study of late discovery experiences undertaken from an ethical perspective. While this study recruited new participants, it also included an ethical re-analysis of existing late discovery accounts across both practices. The findings of this study (a) draws links between past adoption and current donor insemination (heterosexual couple only) practices, (b) reveals that late discoverers are demanding acknowledgment and recognition of the particularity of their experiences, and (c) offers insights into conceptual understandings of the ‘best interests of the child’ principle. These insights derive from the lived experiences of those whose biological and social worlds have been sundered and secrecy and denial of difference used to conceal this. It suggests that acknowledging the equal moral status of the child may be useful in strengthening conceptual understandings of the ‘best interests of the child’ principle. This equal moral status involves ensuring that personal autonomy and the ability to exercise free will is protected; that the integrity of the relationships of trust expected and demanded between parent/s and children is defended and supported; and that equal access to normative socio-cultural practices, that is; non-fictionalised birth certificates and open records, is guaranteed.
Resumo:
Schizophrenia is often characterised by diminished self-experience. This article describes the development and principles of a manual for a psychotherapeutic treatment model that aims to enhance self-experience in people diagnosed with schizophrenia. Metacognitive Narrative Psychotherapy draws upon dialogical theory of self and the work of Lysaker and colleagues, in conjunction with narrative principles of therapy as operationalised by Vromans. To date, no manual for a metacognitive narrative approach to the treatment of schizophrenia exists. After a brief description of narrative understandings of schizophrenia, the development of the manual is described. Five general phases of treatment are outlined: (1) developing a therapeutic relationship; (2) eliciting narratives; (3) enhancing metacognitive capacity; (4) enriching narratives, and; (5) living enriched narratives. Proscribed practices are also described. Examples of therapeutic interventions and dialogue are provided to further explain the application of interventions in-session. The manual has been piloted in a study investigating the effectiveness of Metacognitive Narrative Psychotherapy in the treatment of people diagnosed with schizophrenia spectrum disorders.
Resumo:
An optical system which performs the multiplication of binary numbers is described and proof-of-principle experiments are performed. The simultaneous generation of all partial products, optical regrouping of bit products, and optical carry look-ahead addition are novel features of the proposed scheme which takes advantage of the parallel operations capability of optical computers. The proposed processor uses liquid crystal light valves (LCLVs). By space-sharing the LCLVs one such system could function as an array of multipliers. Together with the optical carry look-ahead adders described, this would constitute an optical matrix-vector multiplier.
Resumo:
The lack of an obvious “band gap” is a formidable hurdle for making a nanotransistor from graphene. Here, we use density functional calculations to demonstrate for the first time that porosity such as evidenced in recently synthesized porous graphene (http://www.sciencedaily.com/releases/2009/11/091120084337.htm) opens a band gap. The size of the band gap (3.2 eV) is comparable to most popular photocatalytic titania and graphitic C3N4 materials. In addition, the adsorption of hydrogen on Li-decorated porous graphene is much stronger than that in regular Li-doped graphene due to the natural separation of Li cations, leading to a potential hydrogen storage gravimetric capacity of 12 wt %. In light of the most recent experimental progress on controlled synthesis, these results uncover new potential for the practical application of porous graphene in nanoelectronics and clean energy.
Resumo:
This paper provides an overview of the regulatory developments in the UK which impact on the use of in vitro fertilization (IVF) and embryo screening techniques for the creation of “saviour siblings.” Prior to the changes implemented under the Human Fertilisation and Embryology Act 2008, this specific use of IVF was not addressed by the legislative framework and regulated only by way of policy issued by the Human Fertilisation and Embryology Authority (HFEA). Following the implementation of the statutory reforms, a number of restrictive conditions are now imposed on the face of the legislation. This paper considers whether there is any justification for restricting access to IVF and pre-implantation tissue typing for the creation of “saviour siblings.” The analysis is undertaken by examining the normative factors that have guided the development of the UK regulatory approach prior to the 2008 legislative reforms. The approach adopted in relation to the “saviour sibling” issue is compared to more general HFEA policy, which has prioritized the notion of reproductive choice and determined that restrictions on access are only justified on the basis of harm considerations.
Resumo:
Recent experiments [F. E. Pinkerton, M. S. Meyer, G. P. Meisner, M. P. Balogh, and J. J. Vajo, J. Phys. Chem. C 111, 12881 (2007) and J. J. Vajo and G. L. Olson, Scripta Mater. 56, 829 (2007)] demonstrated that the recycling of hydrogen in the coupled LiBH4/MgH2 system is fully reversible. The rehydrogenation of MgB2 is an important step toward the reversibility. By using ab initio density functional theory calculations, we found that the activation barrier for the dissociation of H2 are 0.49 and 0.58 eV for the B and Mg-terminated MgB2(0001) surface, respectively. This implies that the dissociation kinetics of H2 on a MgB2 (0001) surface should be greatly improved compared to that in pure Mg materials. Additionally, the diffusion of dissociated H atom on the Mg-terminated MgB2(0001) surface is almost barrier-less. Our results shed light on the experimentally-observed reversibility and improved kinetics for the coupled LiBH4/MgH2 system.
Resumo:
Ab initio density functional calculations were performed to study the geometry and electronic structure of a prototypical zigzag AlN nanoribbon. We find that H-terminated zigzag 10-AlN nanoribbons have a non-direct band gap and are nonmagnetic. When a transverse electric field is applied, the band gap decreases monotonically with the strength of field E. Zigzag AlN nanoribbons with the N edge unpassivated display strong spin-polarization close to the Fermi level, which will result in spin-anisotropic transport. These results suggest potential applications for the development of AlN nanoribbon-based nanoelectronics applications.
Resumo:
We predict here from first-principle calculations that finite-length (n,0) single walled carbon nanotubes (SWCNTs) with H-termination at the open ends displaying antiferromagnetic coupling when n is greater than 6. An opposite local gating effect of the spin states, i.e., half metallicity, is found under the influence of an external electric field along the direction of tube axis. Remarkably, boron doping of unpassivated SWCNTs at both zigzag edges is found to favor a ferromagnetic ground state, with the B-doped tubes displaying half-metallic behavior even in the absence of an electric field. Aside of the intrinsic interest of these results, an important avenue for development of CNT-based spintronic is suggested.
Resumo:
Structural and electronic properties have been studied for Boron Nitride nanoribbons (BNNR) with both zigzag and armchair shaped edge (Z-BNNR and A-BNNR) by first-principle spin-polarized total energy calculations. We found that the energy band gap of Z-BNNR is indirect and decreases monotonically with the increasing ribbon width, whereas direct energy band gap oscillation was observed for A-BNNRs. Additionally, C-substitution at either single boron or nitrogen atom site in BNNRs could induce spontaneous magnetization. Our results could be potentially useful to design magnetic nano-devices based on BNNRs.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the formation and diffusion of hydrogen vacancies on MgH2(110) surface and in bulk. We find that the formation energies for a single H-vacancy increase slightly from the surface to deep layers. The energies for creating adjacent surface divancacies at two inplane sites and at an inplane and a bridge site are even smaller than that for the formation of a single H-vacancy, a fact that is attributed to the strong vacancy−vacancy interactions. The diffusion of an H-vacancy from an in-plane site to a bridge site on the surface has the smallest activation barrier calculated at 0.15 eV and should be fast at room temperature. The activation barriers computed for H-vacancy diffusion from the surface into sublayers are all less than 0.70 eV, which is much smaller than the activation energy for desorption of hydrogen on the MgH2(110) surface (1.78−2.80 eV/H2). This suggests that surface desorption is more likely than vacancy diffusion to be rate determining, such that finding effective catalyst on the MgH2 surface to facilitate desorption will be very important for improving overall dehydrogenation performance.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H2 molecules, respectively). Additionally, a molecular adsorption state of H2 above the Ti atom is observed for the first time and is attributed to the polarization of the H2 molecule by the Ti cation. Our results parallel recent findings for H2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.
Resumo:
The recent Australian Convergence Review’s second principle states: “Australians should have access to and opportunities for participation in a diverse mix of services, voices, views and information”. However, in failing to define its own use and understanding of the terms ‘access’ and ‘participation’ the Convergence Review exposes itself to criticism. These terms would no doubt be made unambiguously clear should the Review’s recommendations move towards policy, and this paper contributes to this discussion by framing access and participation, from the perspective of the ‘produser’ (Bruns, 2008), around three separate but related issues: the failure to frame the discussion that will be undertaken by the Australian Law Reform Commission’s 2012 2013 Copyright Inquiry; the prioritising of the market over and above media accountability and the health of the public sphere; and the missed opportunity to develop a national framework for digital literacy and advanced digital citizenry.
Resumo:
Objective To explore the characteristics of regional distribution of cancer deaths in Shandong Province with the principle components analysis. Methods The principle components analysis with co-variance matrix for age-adjusted mortality rates and percentages of 20 types of cancer in 22 counties (cities) were carried out using SAS Software. Results Over 90% of the total information could be reflected by the top 3 principle components and the first principle component alone represented more than half of the overall regional variances. The first component mainly reflected the area differences of esophageal cancer. The second component mainly reflected the area differences of lung cancer, stomach cancer and liver cancer. The value of the first principal component scores showed a clear trend that the west areas possessed higher values and the east the lower values. Based on the top two components,the 22 counties (cities) could be divided into several geographical clusters. Conclusion The overall difference of regional distribution of cancers in Shandong is dominated by several major cancers including esophageal cancer, lung cancer, stomach cancer and liver cancer. Among them,esophageal cancer makes the largest contribution. If the range of counties (cities) analyzed could be further widened, the characteristics of regional distribution of cancer mortality would be better examined. Abstract in Chinese 目的 利用主成分分析探讨山东省恶性肿瘤死亡的地区分布特征. 方法 利用SAS软件对山东省22个县市区2004~2006午的20种恶性肿瘤标化死亡率和构成比分别进行协方差矩阵主成分分析. 结果 前3个主成分就反映了总体差异90%以上的信息,其中仅第1主成分就提供了总体差异一半以上的信息.第1主成分主要反映了食管癌的地区差异,第2主成分主要反映肺癌的地区差异,兼顾胃癌和肝癌.各地区第1主成分得分呈现西高东低的趋势,根据第1和第2主成分可以将调查地区分为若干类别,表现为明显的地理聚集性. 结论 山东省各地区恶性肿瘤死亡的总体差异主要取决于少数高发肿瘤,包括食管癌、肺癌、胃癌、肝癌等,其中以食管癌地位最为突出.如能进一步扩大分析范围,可更好地查明恶性肿瘤死亡的地区特征.
Resumo:
Equity and Trusts : in Principle, 3rd edition is updated and revised throughout. It addresses the principles of equity and trusts and provides a clear analysis of this area.
Resumo:
Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in comparison with N2. This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2-capture phenomenon is considered.