985 resultados para Lacrimal duct obstruction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry eye syndrome (DES) is a complex, multifactorial, immune-associated disorder of the tear and ocular surface. DES with a high prevalence world over needs identification of potential biomarkers so as to understand not only the disease mechanism but also to identify drug targets. In this study we looked for differentially expressed proteins in tear samples of DES to arrive at characteristic biomarkers. As part of a prospective case-control study, tear specimen were collected using Schirmer strips from 129 dry eye cases and 73 age matched controls. 2D electrophoresis (2DE) and Differential gel electrophoresis (DIGE) was done to identify differentially expressed proteins. One of the differentially expressed protein in DES is lacrimal proline rich 4 protein (LPRR4). LPRR4 protein expression was quantified by enzyme immune sorbent assay (ELISA). LPRR4 was down regulated significantly in all types of dry eye cases, correlating with the disease severity as measured by clinical investigations. Further characterization of the protein is required to assess its therapeutic potential in DES.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the cooling performance due to air flow and aerodynamics of the Formula Student open wheeled race car has been investigated and optimized with the help of CFD simulations and experimental validation. The race car in context previously suffered from overheating problems. Flow analysis was carried out based on the detailed race car 3D model (NITK Racing 2012 formula student race car). Wind tunnel experiments were carried out on the same. The results obtained from the computer simulations are compared with experimental results obtained from wind tunnel testing of the full car. Through this study it was possible to locate the problem areas and hence choose the best configuration for the cooling duct. The CFD analysis helped in calculating the mass flow rate, pressure and velocity distribution for different velocities of the car which is then used to determine the heat dissipated by the radiator. Area of flow separation could be visualized and made sure smooth airflow into the radiator core area. This significantly increased the cooling performance of the car with reduction in drag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study is to validate the applicability of the PolyVinyliDene Fluoride (PVDF) nasal sensor to assess the nasal airflow, in healthy subjects and patients with nasal obstruction and to correlate the results with the score of Visual Analogue Scale (VAS). Methods: PVDF nasal sensor and VAS measurements were carried out in 50 subjects (25-healthy subjects and 25 patients). The VAS score of nasal obstruction and peak-to-peak amplitude (Vp-p) of nasal cycle measured by PVDF nasal sensors were analyzed for right nostril (RN) and left nostril (LN) in both the groups. Spearman's rho correlation was calculated. The relationship between PVDF nasal sensor measurements and severity of nasal obstruction (VAS score) were assessed by ANOVA. Results: In healthy group, the measurement of nasal airflow by PVDF nasal sensor for RN and LN were found to be 51.14 +/- 5.87% and 48.85 +/- 5.87%, respectively. In patient group, PVDF nasal sensor indicated lesser nasal airflow in the blocked nostrils (RN: 23.33 +/- 10.54% and LN: 32.24 +/- 11.54%). Moderate correlation was observed in healthy group (r = 0.710, p < 0.001 for RN and r = 0.651, p < 0.001 for LN), and moderate to strong correlation in patient group (r = 0.751, p < 0.01 for RN and r = 0.885, p < 0.0001 for LN). Conclusion: PVDF nasal sensor method is a newly developed technique for measuring the nasal airflow. Moderate to strong correlation was observed between PVDF nasal sensor data and VAS scores for nasal obstruction. In our present study, PVDF nasal sensor technique successfully differentiated between healthy subjects and patients with nasal obstruction. Additionally, it can also assess severity of nasal obstruction in comparison with VAS. Thus, we propose that the PVDF nasal sensor technique could be used as a new diagnostic method to evaluate nasal obstruction in routine clinical practice. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many boundary value problems occur in a natural way while studying fluid flow problems in a channel. The solutions of two such boundary value problems are obtained and analysed in the context of flow problems involving three layers of fluids of different constant densities in a channel, associated with an impermeable bottom that has a small undulation. The top surface of the channel is either bounded by a rigid lid or free to the atmosphere. The fluid in each layer is assumed to be inviscid and incompressible, and the flow is irrotational and two-dimensional. Only waves that are stationary with respect to the bottom profile are considered in this paper. The effect of surface tension is neglected. In the process of obtaining solutions for both the problems, regular perturbation analysis along with a Fourier transform technique is employed to derive the first-order corrections of some important physical quantities. Two types of bottom topography, such as concave and convex, are considered to derive the profiles of the interfaces. We observe that the profiles are oscillatory in nature, representing waves of variable amplitude with distinct wave numbers propagating downstream and with no wave upstream. The observations are presented in tabular and graphical forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With ever more stringent NOX emissions, it is necessary to examine removal of nitrogen oxide from diesel engine exhaust. This paper describes the study of NOX reduction from 5.9-kW stationary diesel engine exhaust under nanosecond pulse energization. Two plasma reactors characterized by dielectric barrier discharge has been designed, built, and evaluated. One of the reactor designs include nine numbers of electrodes kept in parallel, and the exhaust was allowed to pass axially, whereas the second reactor consists of nine parallel electrodes and the exhaust was allowed to pass radially. The reactors were individually tested for the treatment of nitrogen oxides for gas flow rate of 2, 5, and 10 L/min. Both the reactors have been individually tested, and results show an appreciable removal of NOX with equal discharge volume. From the results, it was found that both the reactors were an efficient NOX removal. With consumption of only 36 J/L, the reactors had shown a considerable 45% DeNO(X) efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a straight cylindrical duct with a steady subsonic axial flow and a reacting boundary (e.g. an acoustic lining). The wave modes are separated into ordinary acoustic duct modes, and surface modes confined to a small neighbourhood of the boundary. Many researchers have used a mass-spring-damper boundary model, for which one surface mode has previously been identified as a convective instability; however, we show the stability analysis used in such cases to be questionable. We investigate instead the stability of the surface modes using the Briggs-Bers criterion for a Flügge thin-shell boundary model. For modest frequencies and wavenumbers the thin-shell has an impedance which is effectively that of a mass-spring-damper, although for the large wavenumbers needed for the stability analysis the thin-shell and mass-spring-damper impedances diverge, owing to the thin shell's bending stiffness. The thin shell model may therefore be viewed as a regularization of the mass-spring-damper model which accounts for nonlocally-reacting effects. We find all modes to be stable for realistic thin-shell parameters, while absolute instabilities are demonstrated for extremely thin boundary thicknesses. The limit of vanishing bending stiffness is found to be a singular limit, yielding absolute instabilities of arbitrarily large temporal growth rate. We propose that the problems with previous stability analyses are due to the neglect of something akin to bending stiffness in the boundary model. Our conclusion is that the surface mode previously identified as a convective instability may well be stable in reality. Finally, inspired by Rienstra's recent analysis, we investigate the scattering of an acoustic mode as it encounters a sudden change from a hard-wall to a thin-shell boundary, using a Wiener-Hopf technique. The thin-shell is considered to be clamped to the hard-wall. The acoustic mode is found to scatter into transmitted and reflected acoustic modes, and surface modes strongly linked to the solid waves in the boundary, although no longitudinal or transverse waves within the boundary are excited. Examples are provided that demonstrate total transmission, total reflection, and a combination of the two. This thin-shell scattering problem is preferable to the mass-spring-damper scattering problem presented by Rienstra, since the thin-shell problem is fully determined and does not need to appeal to a Kutta-like condition or the inclusion of an instability in order to avoid a surface-streamline cusp at the boundary change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results on the stability of compressible inviscid swirling flows in an annular duct. Such flows are present in aeroengines, for example in the by-pass duct, and there are also similar flows in many aeroacoustic or aeronautical applications. The linearised Euler equations have a ('critical layer') singularity associated with pure convection of the unsteady disturbance by the mean flow, and we focus our attention on this region of the spectrum. By considering the critical layer singularity, we identify the continuous spectrum of the problem and describe how it contributes to the unsteady field. We find a very generic family of instability modes near to the continuous spectrum, whose eigenvalue wavenumbers form an infinite set and accumulate to a point in the complex plane. We study this accumulation process asymptotically, and find conditions on the flow to support such instabilities. It is also found that the continuous spectrum can cause a new type of instability, leading to algebraic growth with an exponent determined by the mean flow, given in the analysis. The exponent of algebraic growth can be arbitrarily large. Numerical demonstrations of the continuous spectrum instability, and also the modal instabilities are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An explicit Wiener-Hopf solution is derived to describe the scattering of duct modes at a hard-soft wall impedance transition in a circular duct with uniform mean flow. Specifically, we have a circular duct r = 1, - ∞ < x < ∞ with mean flow Mach number M > 0 and a hard wall along x < 0 and a wall of impedance Z along x > 0. A minimum edge condition at x = 0 requires a continuous wall streamline r = 1 + h(x, t), no more singular than h = Ο(x1/2) for x ↓ 0. A mode, incident from x < 0, scatters at x = 0 into a series of reflected modes and a series of transmitted modes. Of particular interest is the role of a possible instability along the lined wall in combination with the edge singularity. If one of the "upstream" running modes is to be interpreted as a downstream-running instability, we have an extra degree of freedom in the Wiener-Hopf analysis that can be resolved by application of some form of Kutta condition at x = 0, for example a more stringent edge condition where h = Ο(x3/2) at the downstream side. The question of the instability requires an investigation of the modes in the complex frequency plane and therefore depends on the chosen impedance model, since Z = Z (ω) is essentially frequency dependent. The usual causality condition by Briggs and Bers appears to be not applicable here because it requires a temporal growth rate bounded for all real axial wave numbers. The alternative Crighton-Leppington criterion, however, is applicable and confirms that the suspected mode is usually unstable. In general, the effect of this Kutta condition is significant, but it is particularly large for the plane wave at low frequencies and should therefore be easily measurable. For ω → 0, the modulus fends to |R001| → (1 + M)/(1 -M) without and to 1 with Kutta condition, while the end correction tends to ∞ without and to a finite value with Kutta condition. This is exactly the same behaviour as found for reflection at a pipe exit with flow, irrespective if this is uniform or jet flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Reynolds-averaged Navier-Stokes equations for describing the turbulent flow in a straight square duct are formulated with two different turbulence models. The governing equations are then expanded as a multi-deck structure in a plane perpendicular to the streamwise direction, with each deck characterized by its dominant physical forces as commonly carried out in analytical work using triple-deck expansion. The resulting equations are numerically integrated using higher polynomial (H-P) finite element technique for each cross-sectional plane to be followed by finite difference representation in the streamwise direction until a fully developed state is reached. The computed results using the two different turbulence models show fair agreement with each other, and concur with the vast body of available experimental data. There is also general agreement between our results and the recent numerical works anisotropic k-epsilon turbulence model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study of turbulent flow in a straight duct of square cross-section is made. An order-of-magnitude analysis of the 3-D, time-averaged Navier-Stokes equations resulted in a parabolic form of the Navier-Stokes equations. The governing equations, expressed in terms of a new vector-potential formulation, are expanded as a multi-deck structure with each deck characterized by its dominant physical forces. The resulting equations are solved using a finite-element approach with a bicubic element representation on each cross-sectional plane. The numerical integration along the streamwise direction is carried out with finite-difference approximations until a fully-developed state is reached. The computed results agree well with other numerical studies and compare very favorably with the available experimental data. One important outcome of the current investigation is the interpretation analytically that the driving force of the secondary flow in a square duct comes mainly from the second-order terms of the difference in the gradients of the normal and transverse Reynolds stresses in the axial vorticity equation.