144 resultados para La2O3
Resumo:
The title compound, La14V6CuO36.5, was prepared from a stoichiometric mixture of La2O3,V2O5, and CuO at 1050-1080 degreesC. The compound forms transparent, pale green crystals and was characterized by wavelength dispersive spectroscopy and single crystal X-ray diffraction. The structure contains isolated VO43- tetrahedra and [OCuO](3-) sticks dispersed in a lanthanum oxide network. Films of La14V6CuO36.5 were grown on R-plane sapphire by using pulsed laser deposition. Rutherford backscattering spectroscopic and X-ray diffraction analyses of the films showed oriented growth of the title phase, a similar to5 eV optical band gap and n-type conductivity. The compound is an example of a transparent copper(I) oxide.
Resumo:
Phase relations in the system Cu-La-O at 1200 K have been determined by equilibrating samples of different average composition at 1200 K, and phase analysis of quenched samples using optical microscopy, XRD, SEM and EDX. The equilibration experiments were conducted in evacuated ampoules, and under flowing inert gas and pure oxygen. There is only one stable binary oxide La2O3 along the binary La-O, and two oxides Cu2O and CuO along the binary Cu-O. The Cu-La alloys were found to be in equilibrium with La2O3. Two ternary oxides CuLaO2 and CuLa2O4+
Resumo:
Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.
Resumo:
We have synthesized La0.83Na0.11MnO2.93 by heating La2O3 and MnCO3 in NaCl melt at 900 °C. The exact composition was arrived by analyzing each ion by an independent chemical method. The compound crystallized in a rhombohedral structure and showed an insulator-to-metal transition at 290 K. Epitaxial thin films were fabricated on LaAlO3 (100) using a pulsed laser deposition technique. The film also showed an insulator-to-metal transition at 290 K. Magnetoresistance [ΔR/R0 = (RH−R0)/R0] was −71% near the insulator-to-metal transition temperature of 290 K at 6 T magnetic field.
Resumo:
Surface oxidation of La, Ce, Sm and Tb metals has been investigated by He(II) ultraviolet photoelectron spectroscopy (u.p.s.) and X-ray photoelectron spectroscopy (X.p.s.). Oxidation of La gives rise to La2O3 on the surface. While Ce2O3 appears to be the stable oxide on the surface, we find evidence for formation of CeO2 at high oxygen exposure. Valence band of Sm clearly shows the presence of both divalent and trivalent states due to interconfigurational fluctuation. Exposure of Sm to oxygen first depletes the divalent Sm at the surface. While Sm2O3 is the stable oxide on the surface of Sm, Tb2O3 is the stable oxide on the surface of Tb (and not any of the higher oxides).
Resumo:
In the system La-Cr-O, there are three ternary oxides (LaCrO4, La2Cr3O12, and La2CrO6) that contain Cr in higher valence states (V or VI). On heating, LaCrO4 decomposes to LaCrO3, La2Cr3O12 to a mixture of LaCrO4 and Cr2O3, and La2CrO6 to LaCrO3 and La2O3 with loss of oxygen. The oxygen potentials corresponding to these decomposition reactions are determined as a function of temperature using solid-state cells incorporating yttria-stabilized zirconia as the electrolyte. Measurements are made from 840K to the decomposition temperature of the ternary oxides in pure oxygen. The standard Gibbs energies of formation of the three ternary oxides are derived from the reversible electromotive force (EMF) of the three cells. The standard enthalpy of formation and standard entropy of the three ternary oxides at 298.15K are estimated. Subsolidus phase relations in the system La-Cr-O are computed from thermodynamic data and displayed as isothermal sections at several temperature intervals. The decomposition temperatures in air are 880 (+/- 3)K for La2Cr3O12, 936 (+/- 3)K for LaCrO4, and 1056 (+/- 4)K for La2CrO6.
Resumo:
Presented are new measurements of the standard Gibbs free energy of formation of rhombohedral LaCrO3 from component oxides La2O3 and Cr2O3 in the temperature range from 875 to 1175K, using a bielectrolyte solid-state cell incorporating single crystal CaF2 and composition-graded solid electrolyte (LaF3)(y)(CaF2)(1-y) (y=0-0.32). The results can be represented analytically as Delta G(f(ox))(o) (+/- 2270)/Jmol(-1)=-72329+4.932 (T/K). The measurements were undertaken to resolve serious discrepancies in the data reported in the literature. A critical analysis of previous electrochemical measurements indicates several deficiencies that have been rectified in this study. The enthalpy of formation obtained in this study is consistent with calorimetric data. The standard enthalpy of formation of orthorhombic LaCrO3 from elements at 298.15K computed from the results of this study is Delta H-f(298.15)(o)/kJmol(-1)=-1536.2 (+/- 7). The standard entropy of orthorhombic LaCrO3 at 298.15K is estimated as 99.0 (+/- 4.5)J(molK)(-1).
Resumo:
Innovative bi-electrolyte solid-state cells incorporating single crystal CaF2 and composition-graded solid electrolyte (LaF3) y (CaF2) 1-y (y = 0 to 0.32) were used for measurement of the standard Gibbs energy of formation of hexagonal La0.885Al11.782O19 and cubic LaAlO3 from component binary oxides La2O3 and alpha-Al2O3 in the temperature range from 875 to 1175 K. The cells were designed based on experimentally verified relevant phase relations in the systems La2O3-Al2O3LaF3 and CaF2-LaF3. The results can be summarized as: 5.891 alpha-Al2O3 + 0.4425 La2O3 (A-rare earth)-> La0.885Al11.782O19 (hex), Delta G(f(ox))(degrees)(+/- 2005)/Jmol(-1) = -80982 + 7.313(T/K); 1/2 La2O3 (A-rare earth) + 1/2 a-Al2O3 -> LaAlO3 (cubic), Delta G(f(ox))(degrees)(+/- 2100)/Jmol(-1) = -59810 + 4.51(T/K). Electron probe microanalysis was used to ascertain the non-stoichiometric range of the hexaaluminate phase. The results are critically analyzed in the light of earlier electrochemical measurements. Several imperfections in the electrochemical cells used by former investigators are identified. Data obtained in the study for LaAlO3 are consistent with calorimetric enthalpy of formation and entropy derived from heat capacity data. Estimated are the standard entropy and the standard enthalpy of formation from elements of hexagonal La0.885Al11.782O19 and rhombohedral LaAlO3 at 298.15 K. c 2014 The Electrochemical Society. All rights reserved.
Resumo:
No presente trabalho foi investigada a produção de biodiesel a partir da alcoólise do óleo de palma catalisada por lipase imobilizada comercial. O efeito da razão molar de álcool:óleo, da forma de adição do álcool (única e escalonada), da temperatura de reação, da concentração de enzima, do tipo de álcool (metanol e etanol), do tipo de enzima e da reutilização da enzima no rendimento final de reação foi avaliado. As reações conduzidas com etanol apresentaram rendimentos superiores aos obtidos com o emprego de metanol devido à maior desativação da lipase pelo álcool de menor número de átomos de carbono. O maior rendimento em biodiesel (54%) foi obtido empregando razão molar de álcool:óleo de 3:1, com adição escalonada de etanol (0, 30 e 60 minutos), 9% (m/m) de Lipozyme TL IM a 50C. Não foi possível recuperar a lipase ao final das reações, pois a matriz de imobilização se solubilizou no meio. Além disso, para comparação, foi investigada a utilização das lipases comerciais imobilizadas Lipozyme RM IM e Novozym 435 e dos catalisadores químicos KOH, MgO e La2O3. O rendimento em biodiesel nas reações catalisadas pelas lipases foi maior do que os obtidos com catalisadores químicos. A menor eficiência dos catalisadores químicos pode ser justificada pelo alto índice de acidez do óleo de palma (6,26 mg KOH.g-1) que promove o consumo do catalisador (KOH), devido à neutralização dos ácidos graxos livres presentes no óleo, e o bloqueio dos sítios ativos dos catalisadores químicos sólidos devido à adsorção dos ácidos graxos nestes sítios
Resumo:
[EN] This PhD work started in March 2010 with the support of the University of the Basque Country (UPV/EHU) under the program named “Formación de Personal Investigador” at the Chemical and Environmental Engineering Department in the Faculty of Engineering of Bilbao. The major part of the Thesis work was carried out in the mentioned department, as a member of the Sustainable Process Engineering (SuPrEn) research group. In addition, this PhD Thesis includes the research work developed during a period of 6 months at the Institut für Mikrotechnik Mainz GmbH, IMM, in Germany. During the four years of the Thesis, conventional and microreactor systems were tested for several feedstocks renewable and non-renewable, gases and liquids through several reforming processes in order to produce hydrogen. For this purpose, new catalytic formulations which showed high activity, selectivity and stability were design. As a consequence, the PhD work performed allowed the publication of seven scientific articles in peer-reviewed journals. This PhD Thesis is divided into the following six chapters described below. The opportunity of this work is established on the basis of the transition period needed for moving from a petroleum based energy system to a renewable based new one. Consequently, the present global energy scenario was detailed in Chapter 1, and the role of hydrogen as a real alternative in the future energy system was justified based on several outlooks. Therefore, renewable and non-renewable hydrogen production routes were presented, explaining the corresponding benefits and drawbacks. Then, the raw materials used in this Thesis work were described and the most important issues regarding the processes and the characteristics of the catalytic formulations were explained. The introduction chapter finishes by introducing the concepts of decentralized production and process intensification with the use of microreactors. In addition, a small description of these innovative reaction systems and the benefits that entailed their use were also mentioned. In Chapter 2 the main objectives of this Thesis work are summarized. The development of advanced reaction systems for hydrogen rich mixtures production is the main objective. In addition, the use and comparison between two different reaction systems, (fixed bed reactor (FBR) and microreactor), the processing of renewable raw materials, the development of new, active, selective and stable catalytic formulations, and the optimization of the operating conditions were also established as additional partial objectives. Methane and natural gas (NG) steam reforming experimental results obtained when operated with microreactor and FBR systems are presented in Chapter 3. For these experiments nickel-based (Ni/Al2O3 and Ni/MgO) and noble metal-based (Pd/Al2O3 and Pt/Al2O3) catalysts were prepared by wet impregnation and their catalytic activity was measured at several temperatures, from 973 to 1073 K, different S/C ratios, from 1.0 to 2.0, and atmospheric pressure. The Weight Hourly Space Velocity (WHSV) was maintained constant in order to compare the catalytic activity in both reaction systems. The results obtained showed a better performance of the catalysts operating in microreactors. The Ni/MgO catalyst reached the highest hydrogen production yield at 1073 K and steam-to-carbon ratio (S/C) of 1.5 under Steam methane Reforming (SMR) conditions. In addition, this catalyst also showed good activity and stability under NG reforming at S/C=1.0 and 2.0. The Ni/Al2O3 catalyst also showed high activity and good stability and it was the catalyst reaching the highest methane conversion (72.9 %) and H2out/CH4in ratio (2.4) under SMR conditions at 1073 K and S/C=1.0. However, this catalyst suffered from deactivation when it was tested under NG reforming conditions. Regarding the activity measurements carried out with the noble metal-based catalysts in the microreactor systems, they suffered a very quick deactivation, probably because of the effects attributed to carbon deposition, which was detected by Scanning Electron Microscope (SEM). When the FBR was used no catalytic activity was measured with the catalysts under investigation, probably because they were operated at the same WHSV than the microreactors and these WHSVs were too high for FBR system. In Chapter 4 biogas reforming processes were studied. This chapter starts with an introduction explaining the properties of the biogas and the main production routes. Then, the experimental procedure carried out is detailed giving concrete information about the experimental set-up, defining the parameters measured, specifying the characteristics of the reactors used and describing the characterization techniques utilized. Each following section describes the results obtained from activity testing with the different catalysts prepared, which is subsequently summarized: Section 4.3: Biogas reforming processes using γ-Al2O3 based catalysts The activity results obtained by several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 are presented in this section. In addition, an alumina-based commercial catalyst was tested in order to compare the activity results measured. Four different biogas reforming processes were studied using a FBR: dry reforming (DR), biogas steam reforming (BSR), biogas oxidative reforming (BOR) and tri-reforming (TR). For the BSR process different steam to carbon ratios (S/C) from 1.0 to 3.0, were tested. In the case of BOR process the oxygen-to-methane (O2/CH4) ratio was varied from 0.125 to 0.50. Finally, for TR processes different S/C ratios from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were studied. Then, the catalysts which achieved high activity and stability were impregnated in a microreactor to explore the viability of process intensification. The operation with microreactors was carried out under the best experimental conditions measured in the FBR. In addition, the physicochemical characterization of the fresh and spent catalysts was carried out by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), N2 physisorption, H2 chemisorption, Temperature Programmed Reduction (TPR), SEM, X-ray Photoelectron Spectroscopy (XPS) and X-ray powder Diffraction (XRD). Operating with the FBR, conversions close to the ones predicted by thermodynamic calculations were obtained by most of the catalysts tested. The Rh-Ni/Ce-Al2O3 catalyst obtained the highest hydrogen production yield in DR. In BSR process, the Ni/Ce-Al2O3 catalyst achieved the best activity results operating at S/C=1.0. In the case of BOR process, the Ni/Ce-Zr-Al2O3 catalyst showed the highest reactants conversion values operating at O2/CH4=0.25. Finally, in the TR process the Rh-Ni/Ce-Al2O3 catalyst obtained the best results operating at S/C=1.0 and O2/CH4=0.25. Therefore, these three catalysts were selected to be coated onto microchannels in order to test its performance under BOR and TR processes conditions. Although the operation using microreactors was carried out under considerably higher WHSV, similar conversions and yields as the ones measured in FBR were measured. Furthermore, attending to other measurements like Turnover Frequency (TOF) and Hydrogen Productivity (PROD), the values calculated for the catalysts tested in microreactors were one order of magnitude higher. Thus, due to the low dispersion degree measured by H2-chemisorption, the Ni/Ce-Al2O3 catalyst reached the highest TOF and PROD values. Section 4.4: Biogas reforming processes using Zeolites L based catalysts In this section three type of L zeolites, with different morphology and size, were synthesized and used as catalyst support. Then, for each type of L zeolite three nickel monometallic and their homologous Rh-Ni bimetallic catalysts were prepared by the wetness impregnation method. These catalysts were tested using the FBR under DR process and different conditions of BSR (S/C ratio of 1.0 and 2.0), BOR (O2/CH4 ratio of 0.25 and 0.50) and TR processes (at S/C=1.0 and O2/CH4=0.25). The characterization of these catalysts was also carried out by using the same techniques mentioned in the previous section. Very high methane and carbon dioxide conversion values were measured for almost all the catalysts under investigation. The experimental results evidenced the better catalytic behavior of the bimetallic catalysts as compared to the monometallic ones. Comparing the catalysts behavior with regards to their morphology, for the BSR process the Disc catalysts were the most active ones at the lowest S/C ratio tested. On the contrary, the Cylindrical (30–60 nm) catalysts were more active under BOR conditions at O2/CH4=0.25 and TR processes. By the contrary, the Cylindrical (1–3 µm) catalysts showed the worst activity results for both processes. Section 4.5: Biogas reforming processes using Na+ and Cs+ doped Zeolites LTL based catalysts A method for the synthesis of Linde Type L (LTL) zeolite under microwave-assisted hydrothermal conditions and its behavior as a support for heterogeneously catalyzed hydrogen production is described in this section. Then, rhodium and nickel-based bimetallic catalysts were prepared in order to be tested by DR process and BOR process at O2/CH4=0.25. Moreover, the characterization of the catalysts under investigation was also carried out. Higher activities were achieved by the catalysts prepared from the non-doped zeolites, Rh-Ni/D and Rh-Ni/N, as compared to the ones supported on Na+ and Cs+ exchanged supports. However, the differences between them were not very significant. In addition, the Na+ and Cs+ incorporation affected mainly to the Disc catalysts. Comparing the results obtained by these catalysts with the ones studied in the section 4.4, in general worst results were achieved under DR conditions and almost the same results when operated under BOR conditions. In Chapter 5 the ethylene glycol (EG) as feed for syngas production by steam reforming (SR) and oxidative steam reforming (OSR) was studied by using microchannel reactors. The product composition was determined at a S/C of 4.0, reaction temperatures between 625°C and 725°C, atmospheric pressure and Volume Hourly Space Velocities (VHSV) between 100 and 300 NL/(gcath). This work was divided in two sections. The first one corresponds to the introduction of the main and most promising EG production routes. Then, the new experimental procedure is detailed and the information about the experimental set-up and the measured parameters is described. The characterization was carried out using the same techniques as for the previous chapter. Then, the next sections correspond to the catalytic activity and catalysts characterization results. Section 5.3: xRh-cm and xRh-np catalysts for ethylene glycol reforming Initially, catalysts with different rhodium loading, from 1.0 to 5.0 wt. %, and supported on α-Al2O3 were prepared by two different preparation methods (conventional impregnation and separate nanoparticle synthesis). Then, the catalysts were compared regarding their measured activity and selectivity, as well as the characterization results obtained before and after the activity tests carried out. The samples prepared by a conventional impregnation method showed generally higher activity compared to catalysts prepared from Rh nanoparticles. By-product formation of species such as acetaldehyde, ethane and ethylene was detected, regardless if oxygen was added to the feed or not. Among the catalysts tested, the 2.5Rh-cm catalyst was considered the best one. Section 5.4: 2.5Rh-cm catalyst support modification with CeO2 and La2O3 In this part of the Chapter 5, the catalyst showing the best performance in the previous section, the 2.5Rh-Al2O3 catalyst, was selected in order to be improved. Therefore, new Rh based catalysts were designed using α-Al2O3 and being modified this support with different contents of CeO2 or La2O3 oxides. All the catalysts containing additives showed complete conversion and selectivities close to the equilibrium in both SR and OSR processes. In addition, for these catalysts the concentrations measured for the C2H4, CH4, CH3CHO and C2H6 by-products were very low. Finally, the 2.5Rh-20Ce catalyst was selected according to its catalytic activity and characterization results in order to run a stability test, which lasted more than 115 hours under stable operation. The last chapter, Chapter 6, summarizes the main conclusions achieved throughout this Thesis work. Although very high reactant conversions and rich hydrogen mixtures were obtained using a fixed bed reaction system, the use of microreactors improves the key issues, heat and mass transfer limitations, through which the reforming reactions are intensified. Therefore, they seem to be a very interesting and promising alternative for process intensification and decentralized production for remote application.
Resumo:
玻璃中稀土掺杂的离子的光谱性质受其周围的玻璃结构和在玻璃基质中的分布影响很大。利用熔融法制备了组分为9SiO2·26Al2O3·65CaO·1.0Er2O3·0.3Yb2O3和分别加入MgO以及La2O3的掺铒钙铝硅玻璃,并研究了其吸收边和光学带隙。计算得出离子填充比随玻璃的平均摩尔质量的增大而减小,同时利用Judd—Ofelt模型计算出该玻璃体系的Ω2,Ω4和Ω6参数,并进行了分析。随着MgO或La2O3的加入,吸收边向短波长移动,光学带隙增大,同时Ω2和Ω6值也增大。对ln(α)和hω的曲线进行线性拟
Resumo:
采用传统的玻璃熔融方法,研究了Bi2O3-B2O3-TiO2-RmOn四元系统的玻璃形成区(RmOn分别为La2O3、Sb2O3、ZrO2、SiO2和Nb2O5氧化物),给出了上述四元系统的玻璃形成范围。研究发现:Bi2O3-B2O3-TiO2-La2O3系统的玻璃形成范围最大,当TiO2的摩尔含量超过25%时,上述五个系统均不能形成玻璃。分剐熔制了摩尔分数55Bi2O3-35B2O3—5TiO2—5RmOn的玻璃(RmOn分别为La2O3、Sb2O3、ZrO2、SiO2和Nb2O5),测定了其红外吸收光
Resumo:
A series of zinc tellurite glasses of 75TeO(2)-20ZnO-(5-x)La2O3-xEr(2)O(3) (x=0.02, 0.05, and 0.1 mol%) with the different hydroxl groups were prepared by the conventional melt-quenching method. Infrared spectra were measured in order to estimate the exact content of OH- groups in samples. The observed increase of the fluorescence lifetime with the oxygen bubbling time has been related to the reduction in the OH- content concentration as evidenced by IR transmission spectra. Various nonradiative decay rates from I-4(13/2) of Er3+ with. the change of OH content were determined from the fluorescence lifetime and radiative decay rates were calculated on the basis of Judd-Ofelt theory. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er2O3-doped TeO2-ZnO-La2O3 modified tellurite glasses were prepared by the conventional melt-quenching method, and the Er3+ : I-4(13/2) -> I-4(15/2) fluorescence properties have been studied for different Er3+ concentrations. Infrared spectra were measured in order to estimate the exact content of OH- groups in samples. Based on the electric dipole-dipole interaction theory, the interaction parameter, C-Er,(Er), for the migration rate of Er3+ : I-4(13/2) -> I-4(13/2) in modified tellurite glass was calculated. Finally, the concentration quenching mechanism using a model based on energy transfer and quenching by hydroxyl (OH-) groups was presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er3+-doped TeO2-BaO (Li2O, Na2O)-La2O3 tellurite glass system was prepared and their density, characteristic temperatures and optical properties were determined and investigated. For the TeO2-BaO-La2O3-Er2O3 system, composition with 10 mol% BaO presented the highest thermal stability and good infrared transmittance. Intense and broad 1.53 mu m infrared fluorescence were observed under 977 nm diode laser excitation and the most full width at half-maximum (FWHM) is similar to 60nm. According to absorption spectrum, we calculated the optical parameters by means of Judd-Ofelt and McCumber theory such as the fluorescence lifetimes which are about 2.72-3.25 ms and the maximum emission cross-sections which are similar to 1.0pm(2) at 1.531 mu m. The sigma(e) x FWHM value of composition with 10 mol% BaO for gain bandwidth is similar to 600 exceeding those in silicon and phosphate glasses. Our results indicated this kind of tellurite glasses could be used as an ideal host glass for optical amplifier. (c) 2005 Elsevier B.V. All rights reserved.