135 resultados para LOSARTAN
Resumo:
We investigated the effects of injection into the supraoptic nucleus (SON) of losartanand PD 123319 (nonpeptide AT(1) and AT(2)- angiotensin II [ANG II] receptor antagonists, respectively); d(CH2)(5)-Tyr(Me)-AVP (AVPA; an arginine-vasopressin [AVP] V-1 receptor antagonist), FK 409 (a nitric oxide [NO] donor), and N-W-mtro-(L)-arginine methyl ester ((L)-NAME; an NO synthase inhibitor) oil water intake, sodium chloride 3% (NaCl) intake and arterial blood pressure induced by injection of ANG 11 into the lateral septal area (LSA). Mate Holtzman rats (250-300 g) were implanted with cannulae into SON and LSA unilaterally. The drugs were injected in 0.5 mul over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. ANG II was injected at a dose of 10 pmol. ANG II antagonists and AVPA were injected at doses of 80 nmol. FK 409 and (L)-NAME were injected at doses of 20 and 40 mug, respectively. Water and NaCl intake was measured over a 2-h period. Prior administration of losartan into the SON decreased water and NaCl intake induced by injection of ANG II. While there was a decrease in water intake, ANG II-induced NaCl intake was significantly increased following injection of AVPA. FK 409 injection decreased water intake and sodium intake induced by ANG II. L-NAME alone increased water and sodium intake and induced a pressor effect. (L)-NAME-potentiated water and sodium intake induced by ANG II. PD 123319 produced no changes in water or sodium intake induced by ANG II. The prior administration of losartan or AVPA decreased mean arterial pressure (MAP) induced by ANG II. PD 123319 decreased the pressor effect of ANG II to a lesser degree than losartan. FK 409 decreased the pressor effect of ANG II while (L)-NAME potentiated it. These results suggest that both ANG II AT, and AVP V, receptors and NO within the SON may be involved in water intake, NaCl intake and the pressor response were induced by activation of ANG II receptors within the LSA. These results do not support the involvement of LSA AT(2) receptors in the mediation of water and NaCl intake responses induced by ANG II, but influence the pressor response. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We speculated that the influence of lateral preoptic area (LPO) in sodium balance, involves arginine(8)-vasopressin (AVP) and angiotensin (ANG II) on Na+ uptake in LPO. Therefore, the present study investigated the effects of central administration of specific AVP and ANG 11 antagonists (d(CH2)(5)-Tyr (Me)-AVP (AAVP) and [Adamanteanacetyl(1), 0-ET-D-Tyr(2), Val(4), Aminobutyryl(6), Arg(8.9)]-AVP (ATAVP) antagonists of V-1 and V-2 receptors of AVP. Also the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively), was investigated on Na+ uptake and renal fluid and electrolyte excretion. After an acclimatization period of 7 days, the animals were maintained under tribromoethanol (200 mg/kg body weight, intraperitonial) anesthesia and placed in a Kopf stereotaxic instrument. Stainless guide cannula was implanted into the LPO. AAVP and ATAVP injected into the LPO prior to AVP produced a reduction in the NaCl intake. Both the AT(1) and AT(2) ligands administered into the LPO elicited a decrease in the NaCl intake induced by AVP injected into the LPO. AVP injection into the LPO increased sodium renal excretion, but this was reduced by prior AAVP administration. The ATAVP produced a decreased in the natriuretic effect of AVP. The losartan injected into LPO previous to AVP decreased the sodium excretion and the CGP 421122A also decreased the natriuretic effect of AVP. The AVP produced an antidiuresis effect that was inhibited by prior administration into LPO of the ATAVP. The AAVP produced no change in the antidiuretic effect of AVP. These results suggest that LPO are implicated in sodium balance that is mediated by V-1, V-2, AT(2) and AT(2) receptors. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
In this study we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (A(1) AVP) and [Adamanteanacatyl(1),D-ET-D-Tyr(2), Va1(4), aminobutyril(6) ,As-8,As-9]-AVP 9 (A(2)AVP), antagonists of V-1 and V-2 arginine(8)-vasopressin (AVP) receptors, respectively, as well as the effects of losartan and CGP42112A, antagonists of angiotensin II (ANGII) AT(1) and AT(2), receptors, respectively, on water and 0.3 M sodium intake induced by water deprivation or sodium depletion (furosemide treatment) and enhanced by AVP injected into the medial septal area (N4SA). A stainless steel carmulawas implanted into the medial septal area (NISA) of male Holtzman rats AVP injection enhanced water and sodium intake in a dose-dependent manner. Pretreatment with V-1 antagonist injected into the MSA produced a dose-dependent reduction, whereas prior injection of V-2 antagonist increased, in a dose-dependent manner, the water and sodium responses elicited by the administration of AVP. Both AT(1) and AT(2) antagonists administered into the MSA elicited a concentration-dependent decrease in water and sodium intake induced by AVP, while simultaneous injection of the two antagonists was more effective in decreasing AVP responses. These results also indicate that the increase in water and sodium intake induced by AvT was mediated primarily by MSA AT(1) receptors. (c) 2007 Published by Elsevier B.V.
Resumo:
It has been shown that central or peripheral injections of the peptide relaxin induces water intake, not sodium intake in rats. Important inhibitory mechanisms involving serotonin and other neurotransmitters in the control of water and NaCl intake have been demonstrated in the lateral parabrachial nucleus (LPBN). In the present Study, we investigated the effects of bilateral injections of methysergide (serotonergic receptor antagonist) into the LPBN on intracerebroventricular (i.c.v.) relaxin-induced water and NaCl intake in rats. Additionally, the effect of the blockade of central angiotensin AT(1) receptors with i.c.v. losartan on relaxin-induced water and NaCl intake in rats treated with methysergide into the LPBN was also investigated. Male Holtzman rats with cannulas implanted into the lateral ventricle (LV) and bilaterally in the LPBN were used. Intracerebroventricular injections of relaxin (500 ng/l mul) induced water intake (5.1+/-0.7 ml/120 min), but not significant 1.8% NaCl intake (0.5+/-0.4 ml/120 min). Bilateral injections of methysergide (4 mug/0.2 mul) into the LPBN strongly stimulated relaxin-induced 1.8% NaCl intake (34.5+/-10.9 ml/120 min) and slightly increased water intake (10.5+/-4.9 ml/120 min). The pretreatment with i.c.v. losartan (100 mug/l mul) abolished the effects of i.c.v. relaxin combined with LPBN methysergide on 1.8% NaCI intake (0.5+/-0.4 ml/120 min). Losartan (100 mug/l mul) also abolished relaxin-induced water intake in rats injected with methysergide into the LPBN (1.6+/-0.8 ml/120 min) or not (0.5+/-0.3 ml/120 min). Losartan (50 mug/l mul) partially reduced the effects of relaxin. The results show that central relaxin interacting with central angiotensinergic mechanisms induces NaCl intake after the blockade of LPBN serotonergic mechanisms. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this study, we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (AAVP) an antagonist of V-1 receptors of arginine(8)-vasopressin (AVP) and the effects of losartan and CGP42112A (selective ligands of the AT, and AT, angiotensin receptors, respectively) injections into the paraventricular nucleus (PVN) on the thirst effects of AVP stimulation of the lateral septal area (LSA). AVP injection into the LSA increased the water intake in a dose-dependent manner. AAVP injected into the PVN produced a dose-dependent reduction of the drinking responses elicited by LSA administration of AVP. Both the AT(1) and AT(2) ligands administered into the PVN elicited a concentration-dependent inhibition in the water intake induced by AVP injected into the LSA, but losartan was more effective than CGP42112A the increase in the AVP response. These results indicate that LSA dipsogenic effects induced by AVP are mediated primarily by PVN AT(1) receptors. However, doses of losartan were more effective when combined with CGP42112A than when given alone, suggesting that the thirst induced by AVP injections into LSA may involve activation of multiple angiotensin II (ANG II) receptor subtypes. These results also suggests that facilitatory effects of AVP on water intake into the LSA are mediated through the activation of V-receptors and that the inhibitory effect requires V-receptors. Based on the present findings, we suggest that the administration of AVP into the LSA may play a role in the PVN control of water control. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The present experiments were conducted to investigate die role of the alpha(1A)-, alpha(1B)-, beta(1)-, beta(2)-adrenoceptors, and the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) on the water and sodium intake elicited by paraventricular nucleus (PVN) injection of adrenaline. Male Holtzman rats with a stainless steel cannula implanted into the PVN were used. The ingestion of water and sodium was determined in separate groups submitted to water deprivation or sodium depletion with the diuretic furosemide (20 mg/rat). 5-Methylurapidil (an alpha(1A)-adrenergic antagonist) and ICI-118,551 (a beta(2)-adrenergic antagonist) injected into the PVN produced a dose-dependent increase, whereas cyclazosin (an alpha(1B)-adrenergic antagonist) and atenolol (a beta(1)-adrenergic antagonist) do not affect the inhibitory effect of water intake induced by adrenaline. on the other hand, the PVN administration of adrenaline increased the sodium intake in a dose-dependent manner. Previous injection of the alpha(1A) and beta(1) antagonists decreased, whereas injection of the alpha(1B) and beta(2) antagonists increased the salt intake induced by adrenaline. In rats with several doses of adrenaline into PVN, the previous administration of losartan increased in a dose-dependent manner the inhibitory effect of adrenaline and decreased the salt intake induced by adrenaline, while PVN CGP42112A was without effect. These results indicate that both appetites are mediated primarily by brain AT(1) receptors. However, the doses of losartan were more effective when combined with the doses of CGP42112A than given alone p < 0.05, suggesting that the water and salt intake effects of PVN adrenaline may involve activation of multiple angiotensin II (ANG II) receptors subtypes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to analyze the role of alpha(1),alpha(2)-adrenoceptors, and the effects of losartan and PD123319 (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) injected into the paraventricular nucleus (PVN) on the diuresis, natriuresis, and kaliuresis induced by administration of adrenaline into the medial septal area (MSA). Male Holtzman rats with a stainless steel cannula implanted into the MSA and bilaterally into the PVN were used. The administration of adrenaline into the MSA increased in a dose-dependent manner the urine, sodium, and potassium excretions. The previous administration of prazosin (an alpha(1)-adrenoceptor antagonist) injected into the PVN abolished the above effects of adrenaline, whereas yohimbine (an a-adrenoceptor antagonist) doesn't affect the diuresis, natriuresis, and kaliuresis induced by adrenaline. Pretreatment with losartan into the PVN decreased in a dose-dependent manner the urine, sodium, and potassium excretions induced by MSA administration of adrenaline (50 ng), while PVN PD123319 was without effect. These results indicate that urinary and electrolyte excretion effects induced by adrenaline into the MSA are mediated primarily by PVN AT, receptors. However, the doses of losartan were more effective when combined with the doses of PD123319 than given alone, suggesting that the urinary, natriuretic, and kaliuretic effects of MSA adrenaline may involve activation of multiple angiotensin II receptors subtypes into the PVN. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The specific arginine(8)-vasopressin (AVP) V, receptors antagonist (AAVP) was injected (20, 40 and 80 nmol) into the lateral septal area (LSA) to determine the effects of selective septal V, receptor on water and 3% sodium intake in rats. Was also observed the effects of losartan and CGP42112A (select ligands of the AT(1) and AT(2) ANG II receptors, respectively) injected into LSA prior AVP on the same appetites. Twenty-four hours before the experiments, the rats were deprived of water. The volume of drug solution injected was 0.5 mul. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2,0 h. Injection of AVP reduced the water and sodium ingestion vs. control (0.15 M saline). Pre-treatment with AAVP (40, 80 and 160 nmol) did not alter the decrease in the water ingestion induced by AVP, whereas AAVP abolished the action of AVP-induced sodium intake. Losartan (40, 80 and 160 nmol) did not alter the effect of AVP on water and sodium intake, whereas CGP42112A (20, 40 and 60 nmol) at the first 30 min increased water ingestion. Losartan and CGP42112A together increased the actions of AVP, showing more pronounced effects than when the two antagonists were injected alone. The results showed that AVP inhibited the appetites and these effects were increased by the AAVP. The involvement of angiotensinergic receptors in the effects of AVP is also suggested. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)