977 resultados para LONG-RANGE DEPENDENCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ozone dynamics depend on meteorological characteristics such as wind, radiation, sunshine, air temperature and precipitation. The aim of this study was to determine ozone trajectories along the northern coast of Portugal during the summer months of 2005, when there was a spate of forest fires in the region, evaluating their impact on respiratory and cardiovascular health in the greater metropolitan area of Porto. We investigated the following diseases, as coded in the ninth revision of the International Classification of Diseases: hypertensive disease (codes 401-405); ischemic heart disease (codes 410-414); other cardiac diseases, including heart failure (codes 426-428); chronic obstructive pulmonary disease and allied conditions, including bronchitis and asthma (codes 490-496); and pneumoconiosis and other lung diseases due to external agents (codes 500-507). We evaluated ozone data from air quality monitoring stations in the study area, together with data collected through HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model analysis of air mass circulation and synoptic-scale zonal wind from National Centers for Environmental Prediction data. High ozone levels in rural areas were attributed to the dispersion of pollutants induced by local circulation, as well as by mesoscale and synoptic scale processes. The fires of 2005 increased the levels of pollutants resulting from the direct emission of gases and particles into the atmosphere, especially when there were incoming frontal systems. For the meteorological case studies analyzed, peaks in ozone concentration were positively associated with higher rates of hospital admissions for cardiovascular diseases, although there were no significant associations between ozone peaks and admissions for respiratory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell shape, signaling, and integrity depend on cytoskeletal organization. In this study we describe the cytoskeleton as a simple network of filamentary proteins (links) anchored by complex protein structures (nodes). The structure of this network is regulated by a distance-dependent probability of link formation as P = p/d(s), where p regulates the network density and s controls how fast the probability for link formation decays with node distance (d). It was previously shown that the regulation of the link lengths is crucial for the mechanical behavior of the cells. Here we examined the ability of the two-dimensional network to percolate (i.e. to have end-to-end connectivity), and found that the percolation threshold depends strongly on s. The system undergoes a transition around s = 2. The percolation threshold of networks with s < 2 decreases with increasing system size L, while the percolation threshold for networks with s > 2 converges to a finite value. We speculate that s < 2 may represent a condition in which cells can accommodate deformation while still preserving their mechanical integrity. Additionally, we measured the length distribution of F-actin filaments from publicly available images of a variety of cell types. In agreement with model predictions, cells originating from more deformable tissues show longer F-actin cytoskeletal filaments. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed classical molecular dynamics simulations of the vapor-deposition of alpha-T4 oligomers on the TiO(2)-anatase (101) surface, comparing different sets of charges associated with the atoms of the model. The potential energy surfaces for alpha-T4 and TiO(2) were described by re-parametrizations of the Universal force field with charges given by the charge equilibration (QEq) scheme, or with fixed charges obtained by an ab initio method using the Hirshfeld partition. The two sets of charges lead to completely different results for the interface formation, and for the characteristics of the organic film, with a clearly defined alpha-T4 contact layer in the QEq case, and a more homogeneous molecular distribution when using Hirshfeld charges. The main reason for the discrepancy was found to be the incorrect charge assignment given by QEq to the sulfur and alpha-carbon atoms in thiophenes, and highlight the relevance of long-range interactions in the organization of molecular films. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidimensional scaling is applied in order to visualize an analogue of the small-world effect implied by edges having different displacement velocities in transportation networks. Our findings are illustrated for two real-world systems, namely the London urban network (streets and underground) and the US highway network enhanced by some of the main US airlines routes. We also show that the travel time in these two networks is drastically changed by attacks targeting the edges with large displacement velocities. (C) 2011 Elsevier By. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescent disordered ZrTiO4 powders were obtained by the polymeric precursor soft-chemical method. This oxide system (ordered and disordered) was characterized by photoluminescence, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry and UV vis absorption experiments. The UV absorption tail formation in the disordered oxides was related to the diminution of optical band gap. In the disordered phase, this oxide displayed broad band photoluminescence caused by change in coordination number of titanium and zirconium with oxygen atoms. The gap decreased from 3.09 eV in crystalline oxide to 2.16 eV in disordered oxide. The crystalline oxide presented an orthorhombic alpha-PbO2-type structure in which Zr4+ and Ti4+ were randomly distributed in octahedral coordination polyhedra with oxygen atoms. The amorphous-crystalline transition occurred at almost 700 degrees C, at which point the photoluminescence vanished. The Raman peak at close to 80-200 cm(-1) indicated the presence of locally ordered Ti-O-n and Zr-O-n polyhedra in disordered photoluminescent oxides. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate, through the density-matrix renormalization group and the Lanczos technique, the possibility of a two-leg Kondo ladder presenting an incommensurate orbital order. Our results indicate staggered short-range orbital order at half-filling. Away from half-filling our data are consistent with incommensurate quasi-long-range orbital order. We also observed that an interaction between the localized spins enhances the rung-rung current correlations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutrinos mediate long range forces among macroscopic bodies in a vacuum. When the bodies are placed in the neutrino cosmic background, these forces are modified. Indeed, at distances long compared to the scale T -1, the relic neutrinos completely screen off the two-neutrino exchange force, whereas for small distances the interaction remains unaffected. ©2000 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76TeV over a broad range in relative pseudorapidity (Δν) and the full range of relative azimuthal angle (Δø). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Δø y≈ π) azimuthal correlation is observed at all Δν, as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Δν are observed for particles with similar ø values. This phenomenon, also known as the \ridge, persists up to at least jΔνj = 4. For particles with transverse momenta (pT) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pT = 2-6 GeV/c, and to be much reduced when paired with particles of pT = 10-12 GeV/c. Copyright CERN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incluye Bibliografía