999 resultados para LONG WAVES
Resumo:
We propose a scheme for coupling laser light into graphene plasmons with the help of electrically generated surface acoustic waves. The surface acoustic wave forms a diffraction grating which allows us to excite the long lived phononlike branch of the hybridized graphene plasmon-phonon dispersion with infrared laser light. Our approach avoids patterning the graphene sheet, does not rely on complicated optical near-field techniques, and allows us to electrically switch the coupling between far-field radiation and propagating graphene plasmons.
Resumo:
Pumped storage hydro plants (PSHP) can provide adequate energy storage and frequency regulation capacities in isolated power systems having significant renewable energy resources. Due to its high wind and solar potential, several plans have been developed for La Palma Island in the Canary archipelago, aimed at increasing the penetration of these energy sources. In this paper, the performance of the frequency control of La Palma power system is assessed, when the demand is supplied by the available wind and solar generation with the support of a PSHP which has been predesigned for this purpose. The frequency regulation is provided exclusively by the PSHP. Due to topographic and environmental constraints, this plant has a long tail-race tunnel without a surge tank. In this configuration, the effects of pressure waves cannot be neglected and, therefore, usual recommendations for PID governor tuning provide poor performance. A PI governor tuning criterion is proposed for the hydro plant and compared with other criteria according to several performance indices. Several scenarios considering solar and wind energy penetration have been simulated to check the plant response using the proposed criterion. This tuning of the PI governor maintains La Palma system frequency within grid code requirements.
Resumo:
All higher life forms critically depend on hormones being rhythmically released by the anterior pituitary. The proper functioning of this master gland is dynamically controlled by a complex set of regulatory mechanisms that ultimately determine the fine tuning of the excitable endocrine cells, all of them heterogeneously distributed throughout the gland. Here, we provide evidence for an intrapituitary communication system by which information is transferred via the network of nonendocrine folliculostellate (FS) cells. Local electrical stimulation of FS cells in acute pituitary slices triggered cytosolic calcium waves, which propagated to other FS cells by signaling through gap junctions. Calcium wave initiation was because of the membrane excitability of FS cells, hitherto classified as silent cells. FS cell coupling could relay information between opposite regions of the gland. Because FS cells respond to central and peripheral stimuli and dialogue with endocrine cells, the form of large-scale intrapituitary communication described here may provide an efficient mechanism that orchestrates anterior pituitary functioning in response to physiological needs.
Resumo:
Earlier work showed that playbacks of conspecific song induce expression of the immediate early gene ZENK in the caudo-medial neostriatum (NCM) of awake male zebra finches and that this response disappears with repeated presentations of the same stimulus. In the present study, we investigated whether repetitions of a song stimulus also elicited a decrement in the electrophysiological responses in the NCM neurons of these birds. Multiunit auditory responses in NCM were initially vigorous, but their amplitude decreased (habituated) rapidly to repeated stimulation, declining to about 40% of the initial response during the first 50 iterations. A similar time course of change was seen at the single unit level. This habituation occurred specifically for each song presented but did not occur when pure tones were used as a stimulus. Habituation to conspecific, but not heterospecific, song was retained for 20 h or longer. Injections of inhibitors of protein or RNA synthesis at the recording site did not affect the initial habituation to a novel stimulus, but these drugs blocked the long-term habituation when injected at 0.5-3 h and at 5.5-7 h after the first exposure to the stimulus. Thus, at least two waves of gene induction appear to be necessary for long-lasting habituation to a particular song.
Resumo:
We analyzed surface-wave propagation that takes place at the boundary between a semi-infinite dielectric and a multilayered metamaterial, the latter with indefinite permittivity and cut normally to the layers. Known hyperbolization of the dispersion curve is discussed within distinct spectral regimes, including the role of the surrounding material. Hybridization of surface waves enable tighter confinement near the interface in comparison with pure-TM surface-plasmon polaritons. We demonstrate that the effective-medium approach deviates severely in practical implementations. By using the finite-element method, we predict the existence of long-range oblique surface waves.
Resumo:
We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal–dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal–dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.
Resumo:
Beach profile line data collected from 32 profile sites along Long Beach Island, New Jersey. A total of 2,158 profile line surveys were examined, using empirical eigenfunction analysis and other measures of beach variability. Most profile lines have shown an accretionary trend since 1962 with rates between 2.3 and 0.24 meter per year in spite of erosion estimates due to sea level rise on the order of 0.68 meter per year. A great deal of variability in profile line change takes place along the beach, increasing from north to south, due to the location of profile lines relative to structures and offshore linear shoals. Detailed closely spaced profile lines taken over a year in a groin field near the north end of the island indicate littoral transport directions shift from north to south. Evidence of a littoral transport node near the north end of the groin field has been found. Net transport of the node is toward the south, but the rate could not be established due to lack of adequate wave data. Profile line variability within groin cells shows that single profile lines are not sufficient to determine the net change within a cell. The design of future beach monitoring studies should consider coastal structures, offshore bathymetry, the method of analysis, and the scales of processes under study. A coastal storm in November 1968 moved the MSL back as much as 22 meters; however, the beach recovered without artificial measures. The offshore bathymetry shows a series of shoreface-connected linear shoals at several locations along the island. Limited data show that these have remained stable and that most beach variability takes place in water shallower than 3 meters.
Resumo:
"January 1984."
Resumo:
"October 1970."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The effect of acceleration skewness on sheet flow sediment transport rates (q) over bar (s) is analysed using new data which have acceleration skewness and superimposed currents but no boundary layer streaming. Sediment mobilizing forces due to drag and to acceleration (similar to pressure gradients) are weighted by cosine and sine, respectively, of the angle phi(.)(tau)phi(tau) = 0 thus corresponds to drag dominated sediment transport, (q) over bar (s)similar to vertical bar u(infinity)vertical bar u(infinity), while phi(tau) = 90 degrees corresponds to total domination by the pressure gradients, (q) over bar similar to du(infinity)/dt. Using the optimal angle, phi = 51 degrees based on that data, good agreement is subsequently found with data that have strong influence from boundary layer streaming. Good agreement is also maintained with the large body of U-tube data simulating sine waves with superimposed currents and second-order Stokes waves, all of which have zero acceleration skewness. The recommended model can be applied to irregular waves with arbitrary shape as long as the assumption negligible time lag between forcing and sediment transport rate is valid. With respect to irregular waves, the model is much easier to apply than the competing wave-by-wave models. Issues for further model developments are identified through a comprehensive data review.
Resumo:
We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping 6 away from half-filling, finite-system density-matrix renormalizationgroup (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/delta and 1/delta, respectively, corresponding to ordering wavevectors 2k(F) and 4k(F) for the currents and densities, where 2k(F) = pi(1 - delta). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/delta, the DMRG results are consistent with a true long-range order scenario for the currents and densities. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Ultra-long mode-locked lasers are known to be strongly influenced by nonlinear interactions in long cavities that results in noise-like stochastic pulses. Here, by using an advanced technique of real-time measurements of both temporal and spatial (over round-trips) intensity evolution, we reveal an existence of wide range of generation regimes. Different kinds of coherent structures including dark and grey solitons and rogue-like bright coherent structures are observed as well as interaction between them are revealed.
Resumo:
2000 Mathematics Subject Classification: 35Lxx, 35Pxx, 81Uxx, 83Cxx.