935 resultados para LIQUID-PHASE OXIDATIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of bimetallic Ru-containing monometallic and bimetallic catalysts were prepared and tested for their activity for the hydrogenation of 2-butanone to 2-butanol at 30 °C and 3 bar H2. RuPt bimetallic catalysts were the most active for the reaction, with a ratio of 5 wt% Ru:1 wt% Pt on activated carbon (AC) found to be optimum. The activity of this bimetallic catalyst was more than double that of the sum of the activities of the monometallic Ru and Pt catalysts, providing evidence of a “bimetallic” effect. Structural analysis of the bimetallic catalysts revealed that they consisted of clusters of particles of the order of 1–2 nm. Extended X-ray absorption fine structure analysis showed that there were two types of particle on the surface of the bimetallic RuPt catalyst, specifically monometallic Ru and bimetallic RuPt particles. For the bimetallic particles, it was possible to fit the data with a model in which a Ru core of 1.1 nm is enclosed by two Pt-rich layers, the outer layer containing only 13 at% Ru. Pretreatment of the monometallic and bimetallic catalysts in hydrogen had a significant effect on the activity. Both the bimetallic and monometallic Ru-based catalysts showed a trend of decreasing activity with increasing temperature of prereduction in hydrogen. This loss of activity was almost fully reversible by exposure of the catalysts to air after reduction. The changing activity with exposure to different gas phase environments could not be attributed to changes in particle size or surface composition. It is proposed that the introduction of hydrogen results in a gradual smoothing of the surface and loss of defect sites; this process being reversible on introduction of air. These defect sites are particularly important for the dissociative adsorption of hydrogen, potentially the rate-determining step in this reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A force field model of phosphorus has been developed based on density functional (DF) computations and experimental results, covering low energy forms of local tetrahedral symmetry and more compact (simple cubic) structures that arise with increasing pressure. Rules tailored to DF data for the addition, deletion, and exchange of covalent bonds allow the system to adapt the bonding configuration to the thermodynamic state. Monte Carlo simulations in the N-P-T ensemble show that the molecular (P-4) liquid phase, stable at low pressure P and relatively low temperature T, transforms to a polymeric (gel) state on increasing either P or T. These phase changes are observed in recent experiments at similar thermodynamic conditions, as shown by the close agreement of computed and measured structure factors in the molecular and polymer phases. The polymeric phase obtained by increasing pressure has a dominant simple cubic character, while the polymer obtained by raising T at moderate pressure is tetrahedral. Comparison with DF results suggests that the latter is a semiconductor, while the cubic form is metallic. The simulations show that the T-induced polymerization is due to the entropy of the configuration of covalent bonds, as in the polymerization transition in sulfur. The transition observed with increasing P is the continuation at high T of the black P to arsenic (A17) structure observed in the solid state, and also corresponds to a semiconductor to metal transition. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium polymerization of sulfur is investigated by Monte Carlo simulations. The potential energy model is based on density functional results for the cohesive energy, structural, and vibrational properties as well as reactivity of sulfur rings and chains [Part I, J. Chem. Phys. 118, 9257 (2003)]. Liquid samples of 2048 atoms are simulated at temperatures 450less than or equal toTless than or equal to850 K and P=0 starting from monodisperse S-8 molecular compositions. Thermally activated bond breaking processes lead to an equilibrium population of unsaturated atoms that can change the local pattern of covalent bonds and allow the system to approach equilibrium. The concentration of unsaturated atoms and the kinetics of bond interchanges is determined by the energy DeltaE(b) required to break a covalent bond. Equilibrium with respect to the bond distribution is achieved for 15less than or equal toDeltaE(b)less than or equal to21 kcal/mol over a wide temperature range (Tgreater than or equal to450 K), within which polymerization occurs readily, with entropy from the bond distribution overcompensating the increase in enthalpy. There is a maximum in the polymerized fraction at temperature T-max that depends on DeltaE(b). This fraction decreases at higher temperature because broken bonds and short chains proliferate and, for Tless than or equal toT(max), because entropy is less important than enthalpy. The molecular size distribution is described well by a Zimm-Schulz function, plus an isolated peak for S-8. Large molecules are almost exclusively open chains. Rings tend to have fewer than 24 atoms, and only S-8 is present in significant concentrations at all T. The T dependence of the density and the dependence of polymerization fraction and degree on DeltaE(b) give estimates of the polymerization temperature T-f=450+/-20 K. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dehydrogenation of 1,2,3,4-tetrahydrocarbazole (THCZ) to form carbazole (CZ) over supported palladium catalysts was examined in the presence of hydrogen acceptors. As expected, liquid hydrogen acceptors increased the rate of reaction but, importantly, gaseous hydrogen acceptors also have been used. Ethene, propene, and but-1-ene showed up to a fivefold increase in the rate of dehydrogenation. Moreover, compared with the analogous liquid systems, the gaseous alternatives are a potentially more economic method of enhancing the activity and provide a simpler workup. The mechanism for the increase in rate was examined by density functional theory calculations, which showed that the propene hydrogenation competes effectively with the back-hydrogenation of the intermediates formed during the THCZ dehydrogenation, resulting in a shift in the equilibrium toward to the formation of CZ. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Hunig's base tethered ammonium ionic liquids have been used to catalyse the Knoevenagel condensation of aldehydes/ketones with malononitrile and ethyl cyanoacetate. The reactions were performed under homogeneous and under biphasic, liquid-liquid and liquid-silica supported ionic liquid, conditions with the biphasic systems employing cyclohexene as the second phase. By increasing the distance between the ammonium head group and Hunig's base the activity of the catalyst was found to increase. Higher activity, in general, was found under homogeneous reaction conditions; however, the recyclability of the catalyst was improved by supporting the BIL under biphasic conditions. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrodechlorination of chlorobenzene over supported palladium catalysts has been studied. The palladium catalysts: deactivate as the reaction proceeds due to the HCl formed as by-product. The effect of the addition of sodium compounds has been analysed for the neutralisation of HCl. When NaOH was added to the reaction mixture, no beneficial effect was observed due to the detrimental effect of the alkaline medium on the textural and metallic properties of the catalysts. Doping the support with NaOH prior to impregnation with the metal precursor leads (after calcination and reduction) to catalysts with better activity and tolerance to deactivation, especially those obtained when using PdCl2 as the metal precursor. Low metal dispersion and the capture of chloride by forming NaCl are the: main factors contributing to the: improved catalytic properties. Finally, doping the catalysts with NaOH or NaNO3, after reduction of the metal precursor leads to a moderate increase in initial activity and final conversion, although NaOH impregnation also gave rise to support corrosion and metal dispersion modification. (C) 2001 Elsevier Science B.V, All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ru/SiO2 catalyst was investigated for the liquid-phase hydrogenation of butan-2-one to butan-2-ol with water as a medium. Although excellent reactivity was observed, a gradual deactivation of the catalyst was found on recycle of the catalyst. The spent catalyst was characterized by using XRD, XPS, TEM, TPR, CO chemisorption, FTIR and ICP analyses. Formation of Ru(OH)(x) surface species is proposed to be the main cause of catalyst deactivation with no significant Ru leaching into the reaction mixture. Following catalyst regeneration, up to 85% of the initial catalytic activity could be recovered successfully. Moreover, adsorption of secondary aliphatic alcohols on the catalyst was found to significantly reduce the formation of Ru(OH)(x) during the reaction, thus protecting the catalyst from deactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids (ILs) have been suggested as potential

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas: substrate ratio. However, a factor-dependent interaction between the syngas: substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N-2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear: branched (1:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of metal oxidation state under relevant working conditions is crucial to understand catalytic behaviour. The reduction behaviour of Pt and Re was evaluated simultaneously as a function of support and solvent in a pressurized reactor (autoclave). The bimetallic catalysts are used in selective hydrogenation of carboxylic acids and amides. Gas phase reduction reduced the metals more efficiently, in particular Pt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the liquid-phase hydrogenation of citral (3,7-dimethyl-2,6-octadienal) on Au/TiO2 and Pt-Sn/TiO2 thin films was studied in the temperature range 313-353 K and citral concentrations of 0.25-10.0 mol m(-3). The thin films were deposited onto the inner walls of silica capillaries with internal diameter of 250 mu m. First-order dependence on hydrogen pressure and near zero order dependence on citral concentration were observed for the initial rate of citral hydrogenation over the Pt-Sn/TiO2 and Au/TiO2 thin films. The Au/TiO2 catalyst prevents citronellal formation. The highest yield of unsaturated alcohols was obtained on the Pt-Sn/TiO2 film at a reaction temperature of 343 K, liquid residence time of 30 min and a citral conversion of 99%. (C) 2011 Elsevier B.V. All rights reserved.