993 resultados para LIQUID METHANOL
Resumo:
A sensitive, precise, and specific high-performance liquid chromatography (HPLC) method was developed for the assay of lomefloxacin (LFLX) in raw material and tablet preparations. The method validation parameters yielded good results and included the range, linearity, precision, accuracy, specificity, and recovery. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The HPLC separation was performed on a reversed-phase Phenomenex C18 column (150 x 4.6 mm id, 5 pm particle size) with a mobile phase composed of 1% acetic acid-acetonitrile-methanol (70 + 15 + 15, v/v/v), pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 280 nm. The calibration graph for LFLX was linear from 2.0 to 7.0 mg/mL. The interday and intraday precisions (relative standard deviation) were less than 1.0%. The method was applied for the quality control of commercial LFLX tablets to quantitate the drug.
Resumo:
Simple and rapid procedures were developed for the quantification of amfepramone hydrochloride and diazepam and mazindol and diazepam in tablets using high performance liquid chromatography (HPLC) with UV detection. These techniques provided conditions for the separation of each active ingredient from the complex matrices of the dosage forms by dilution or extraction in methanol. Isocratic reversed phase chromatography was performed using acetonitrile, methanol, and aqueous 0,1% ammonium carbonate (70:10:20, v/v/v) as a mobile phase, Radial-Pak C-18 column (100 x 8 mm id, 4 mu m), a column temperature of 25+/-1 degrees C and detection at 255 nm. The calibration curves were linear over a wide concentration range (100-1000 mu g.mL(-1) to amfepramone hydrochloride and mazindol and 10-100 mu g.mL(-1) to diazepam) with good correlation factors of 0.9978, 0.9956 and 0.9997 for amfepramone hydrochloride, mazindol, and diazepam, respectively.Mean recoveries obtained from the two kinds of samples ranged from 83.2 to 102.5%, with coefficients of variation ranging from 1.0 to 6.1.These results demonstrated the efficiency of the proposed methods, as well as advantages such as simplicity and short duration of analysis.
Resumo:
A rapid, accurate, and sensitive high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of ceftazidime in pharmaceuticals. The method validation parameters yielded good results and included range, linearity, precision, accuracy, specificity, and recovery. The excipients in the commercial powder for injection did not interfere with the assay. Reversed-phase chromatography was used for the HPLC separation on a Waters C18 (WAT 054275; Milford, MA) column with methanol-water (70 + 30, v/v) as the mobile phase pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 245 nm. The calibration graph for ceftazidime was linear from 50.0 to 300.0 mu g/mL. The values for interday and intraday precision (relative standard deviation) were < 1 %. The results obtained by the HPLC method were calculated statistically by analysis of variance. We concluded that the HPLC method is satisfactory for the determination of ceftazidime in the raw material and pharmaceuticals.
Resumo:
Two high-performance liquid chromatographic methods for determination of residual monomer in dental acrylic resins are described. Monomers were detected by their UV absorbance at 230 nm, on a Nucleosil((R)) C-18 (5 mu m particle size, 100 angstrom pore size, 15 x 0.46 cm i.d.) column. The separation was performed using acetonitrile-water (55:45 v/v) containing 0.01% triethylamine (TEA) for methyl methacrylate and butyl methacrylate, and acetonitrile-water (60:40 v/v) containing 0.01% TEA for isobutyl methacrylate and 1,6-hexanediol dimethacrylate as mobile phases, at a flow rate of 0.8 mL/min. Good linear relationships were obtained in the concentration range 5.0-80.0 mu g/mL for methyl methacrylate, 10.0-160.0 mu g/mL for butyl methacrylate, 50.0-500.0 mu g/mL for isobutyl methacrylate and 2.5-180.0 mu g/mL for 1,6-hexanediol dimethacrylate. Adequate assay for intra- and inter-day precision and accuracy was observed during the validation process. An extraction procedure to remove residual monomer from the acrylic resins was also established. Residual monomer was obtained from broken specimens of acrylic disks using methanol as extraction solvent for 2 h in an ice-bath. The developed methods and the extraction procedure were applied to dental acrylic resins, tested with or without post-polymerization treatments, and proved to be accurate and precise for the determination of residual monomer content of the materials evaluated. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The high performance liquid chromatography (HPLC) technique was applied to measure phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity in soybean (Glycine max L. Merril cv. BR16) roots. t-Cinnamate, the catalytic product of the PAL reaction was quantified at 275 nm by isocratic elution with methanol:water through an ODS(M) column. Comparative experiments were carried out with 1.0 mM ferulic acid, an inducer of PAL activity. The results suggest that liquid chromatography is a rapid and sensitive method to analyze PAL activity in non-purified extract.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two simple methods were developed to determine, 11 pesticides in coconut water, a natural isotonic drink rich in salts, sugars and vitamins consumed by the people and athletes. The first procedure involves solid-phase extraction using Sep-Pak Vac C-18 disposable cartridges with methanol for elution. Isocratic analysis was carried out by means of high-performance liquid chromatography with ultraviolet detection at 254 nm to analyse captan, chlorothalonil, carbendazim, lufenuron and diafenthiuron. The other procedure is based on liquid-liquid extraction with hexane-dichloromethane (1:1, v/v), followed by gas chromatographic analysis with effluent splitting to electron-capture detection for determination of endosulfan, captan, tetradifon and trichlorfon and thermionic specific detection for determination of malathion, parathion-methyl and monocrotophos. The methods were validated with fortified samples at different concentration levels (0.01-12.0 mg/kg). Average recoveries ranged from 75 to 104% with relative standard deviations between 1.4 and 11.5%. Each recovery analysis was repeated at least five times. Limits of detection ranged from 0.002 to 2.0 mg/kg. The analytical procedures were applied to 15 samples and no detectable amounts of the pesticides were found in any samples under the conditions described. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Several clean-up procedures which included the use of glass chromatography columns (silica gel, alumina, Florisil, silanized Celite-charcoal), Sep-Pak cartridges and standard solutions were compared for the determination of the following N-methylcarbamate (NMC) insecticides: aldicarb, carbaryl, carbofuran, methomyl and propoxur. According to recovery results of the compounds after elution in a glass column, the most efficient systems employed 4.6% deactivated alumina and a silanized Celite-charcoal (4:1) as adsorbents, using dichloromethane-methanol (99:1) and toluene-acetonitrile (75:25) mixtures, respectively, as binary eluents. The recoveries of the compounds studied varied from 84 to 120%. Comparable recoveries (75-100%) for Sep-Pak cartridges in normal phase (NH2, CN) and reversed phase (C-8) were observed. Different temperatures were tested during the concentration step in a rotary evaporator, and we verified a strong influence of this parameter on the stability of some compounds, such as carbofuran and carbaryl. Recovery studies employing the best clean up procedures were performed at the Brazilian agricultural level in potato and carrot samples; Validation methodology of the US Food and Drug Administration was adapted for the N-methylcarbamate analysis. Their recoveries ranged between 79 and 93% with coefficients of variation of 2.3-8%. (C) 1998 Elsevier B.V. B.V.
Resumo:
A high-performance liquid chromatography (HPLC) method for the determination of acetaldehyde in fuel ethanol was developed. Acetaldehyde was derivatized with 0.900 mL 2,4-dinitrophenylhydrazine (DNPHi) reagent and 50 mu L phosphoric acid 1 mol L-1 at a controlled room temperature of 15 degrees C for 20 min. The separation of acetaldehyde- DNPH (ADNPH) was carried out on a Shimadzu Shim-pack C-18 column, using methanol/LiCl(aq) 1.0 mM (80/20, v/v) as a mobile phase under isocratic elution and UV-Vis detection at 365 nm. The standard curve of ADNPH was linear in the range 3-300 amg L-1 per injection (20 mu L) and the limit of detection (LOD) for acetaldehyde was 2.03 mu g L-1, with a correlation coefficient greater than 0.999 and a precision (relative standard deviation, RSD) of 5.6% (n=5). Recovery studies were performed by fortifying fuel samples with acetaldehyde at various concentrations and the results were in the range 98.7-102%, with a coefficient of variation (CV) from 0.2% to 7.2%. Several fuel samples collected from various gas stations were analyzed and the method was successfully applied to the analysis of acetaldehyde in fuel ethanol samples.
Resumo:
A simple method was developed for the determination of fluquinconazole, pyrimethanil, and clofentezine in whole fruit; peel; and pulp of mango, apple, and papaya. These compounds were extracted from fruit samples with a mixture of ethyl acetate-n-hexane (1 + 1, v/v). An aliquot (2 mL) of the extract was evaporated to near dryness under a stream of nitrogen, and the residue was dissolved with 2 mL methanol. The analysis was performed by means of liquid chromatography with ultraviolet detection at 254 nm using a gradient solvent system. The method was validated with fortified fruit samples at concentration levels of 0.05, 0.10, 0.20, and 0.50 mg/kg. Average recoveries (4-8 replicates) ranged from 80 to 95% with relative standard deviations between 3.5 and 12.7%. Detection limits ranged from 0.03 to 0.05 mg/kg for fruit pulp and 0.03 mg/kg for whole fruit. The quantitation limits ranged from 0.05 to 0.10 mg/kg for fruit pulp and 0.05 mg/kg for whole fruit. The analytical method was applied to fruit samples obtained from local markets.
Resumo:
A competitive enzyme-linked immunosorbent assay (ELISA) method for carbaryl quantitation in crop extracts was validated by liquid chromatography (LC) with diode array detection (DAD). For this purpose, six crops (banana, carrot, green bean, orange, peach and potato) were chosen for recovery and reproducibility studies. The general sample preparation included extraction with methanol followed by liquid-liquid partitioning and clean-up on Celite-charcoal adsorbent column of the vegetable extracts. ELISA samples consisted of a diluted LC extract in assay phosphate buffer (pH 7.5). The potential effect of methanol in these samples was evaluated. It was observed that a maximum content of 10% methanol present in the assay buffer could be tolerated without expressive losses in the ELISA performance. Under these conditions, a IC50 similar to 1.48 mu g l(-1) was obtained. A minimum matrix effect with a 1:50 dilution of the methanolic extracts in assay buffer was noticed, except for green bean samples that inhibited completely the assay. For the vegetable extracts, the ELISA sensitivities varied from 3.9 to 5.7 mu g l(-1), and good recoveries (82-96%) with R.S.D.s ranging from 5.7 to 12.1% were found. An excellent correlation between the LC-DAD and ELISA techniques was obtained. The confirmation of the carbaryl in less concentrated samples was achieved by LC-mass spectrometry interfaced with atmospheric pressure chemical ionisation. The [M + H](+)= 202 and [M + H-57](+)=145 ions, equivalent to the protonated molecular and l-naphthol ions, respectively, were used to carbaryl identification in these samples. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
The cyclic voltammetric behavior of acetaldehyde and the derivatized product with 2,4-dinitrophenylhydrazine (DNPHi) has been studied at a glassy carbon electrode. This study was used to optimize the best experimental conditions for its determination by high-performance liquid chromatographic (HPLC) separation coupled with electrochemical detection. The acetaldehyde-2,4-dinitrophenyl.hydrazone (ADNPH) was eluted and separated by a reversed-phase column, C-18, under isocratic conditions with the mobile phase containing a binary mixture of methanol/LiCl(aq) at a concentration of 1.0 x 10(-3) M (80:20 v/v) and a flow rate of 1.0 mL min(-1). The optimum condition for the electrochemical detection of ADNPH was +1.0 V vs. Ag/AgCl as a reference electrode. The proposed method was simple, rapid (analysis time 7 min) and sensitive (detection limit 3.80 mu g L-1) at a signal-to-noise ratio of 3:1. It was also highly selective and reproducible [standard deviation 8.2% +/- 0.36 (n = 5)]. The analytical curve of ADNPH was linear over the range of 3-300 mg L-1 per injection (20 mu L), and the analytical recovery was > 99%.
Resumo:
The 2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applied herbicides around the world to control broad leave herbs in many crops: In this study, a method was developed for simultaneous extraction and determination of 2,4D and its major transformation product, i.e., the 2,4-dichlorophenol (2,4-DCP), in soil samples. The herbicide and its degradation product were extracted twice from soil samples, after acidification, by dichloromethane on ultrasound system for 1 h. Both extracts were combined and filtrated in qualitative filter paper and Celitee. The total extract was concentrated in rotatory evaporator, dried under N-2 and finally dissolved in 1 ml of methanol. High Performance Liquid Chromatography with UV detection at 230 nm was used for analysis. Recoveries were obtained from soil samples fortified at 0.1, 1.0, 2.0, 3.0 and 4.0 mg kg(-1) levels and the results varied from 85 to 111% (for 2,4-D) and from 95 to 98% (for 2,4-DCP). For both compounds, the limits of quantification were 0.1 mg kg(-1), which were the loss level at which the accuracy and the precision were studied. Nevertheless, the limits of detection, calculated by considering the blank standard deviation and the minimum concentration level, were 0.03 and 0.02 mg kg for 2,4-D and 2,4-DCP, respectively. This proposed method was applied to soil samples of eucalyptus crops, which was previously treated with the herbicide. Despite that, neither 2,4-D nor its degradation product were detected 30 days after the herbicide application. (C) 2003 Elsevier B.V. B.V. All rights reserved.