917 resultados para LINKED PEPTIDES
Resumo:
In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (~ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ~ 300 % in 1h and ~ 40 % degradation during 30 d study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix.
Resumo:
Asthma is an incapacitating disease of the respiratory system, which causes extensive morbidity and mortality worldwide. Asthma affects more than 300 million people globally(Masoli et al. 2004). In Australia, it affects 10.2% of the population (Masoli et al. 2004) and causes 60,000 people to be hospitalised annually. Health care expenditure due to asthma in Australia was $606 million in 2004–2005. There are four primary biological factors that function in the initiation and exacerbation of asthma. Airway inflammation is important as it is often the first response to an airway insult, initiating the three other components: bronchoconstriction, mucus hyper-secretion and hyper-reactivity. The mediators involved in asthma are still not well understood, and current anti-inflammatory corticosteroid treatments are not effective with all asthmatics. As there is currently no cure for asthma, and airway inflammation is the primary component of the disease, it is important that we understand and investigate the mediators of airway inflammation to look for a potential cure and to produce better therapeutics to treat the inflammation. Trefoil factors (TFFs) and secretoglobins (SCGBs) are small secreted proteins involved in the mediation of inflammation and epithelial restitution. TFFs are pro-inflammatory and SCGBs anti-inflammatory by nature. The hypothesis of this study is that in response to induced acute airway inflammation, the expression of TFF1 and TFF3 will increase and expression of SCGB1A1 and SCGB3A2 will decrease in non-asthmatics (N-A), asthmatics medicating with bronchodilators (A-BD) and asthmatics medicating with corticosteroids (A-ST). When comparing the three groups, we expect to see higher expression of the TFFs in the A-BD group compared to the N-A and A-ST groups, indicating that inflammation is mediated by TFFs in asthma and that corticosteroid medication controls their expression as part of the control of inflammation. We expect to see the opposite with SCGBs, with a greater decrease in the A-BD group compared to the other two groups, suggesting that the A-BD group has the least anti-inflammatory activity in response to inflammatory insult. Epigenetic modification plays a role in the regulation of genes that initiate disease states such as inflammatory conditions and cancers. Histone acetylation is one such modification, which involves the acetylation of histones in chromatin by histone acetyltransferases (HATs). This increases the transcription of genes involved with inflammation or enrols histone deacetylases (HDACs) to down-regulate the transcription of inflammatory genes. These HATs and HDACs work in a homeostatic fashion; however, in the event of inflammation, increased HAT activity can stimulate further inflammation, which is believed to be the mechanism involved in some inflammatory diseases. This study hypothesises that in response to inflammation, the expression of HDACs (HDAC1-5) will decrease and the expression of HATs (NCOA1-3, HAT-1 and CREBBP) will increase in all groups. When comparing the expression between the groups, it was expected that a greater decrease in HDACs and a greater increase in HATs will be seen in the A-BD group compared to the other two groups. This would identify histone acetylation as a mechanism involved in the inflammatory condition of asthma and indicate that corticosteroids may treat the inflammation in asthma at least in part by controlling histone acetylation. The aim of the project was to compare the expression of inflammatory genes TFF1, TFF3, SCGB1A1 and SCGB3A2, as well as to compare the gene expression of HDAC1-5, NCOA1-3, HAT-1 and CREBBP within and between N-A (n=15), A-BD (n=15) and A-ST (n=15) groups in response to inflammation. This was performed by collecting airway cells and proteins by sputum induction in three sessions. The sessions were coordinated into an initial baseline collection (SI-1), followed by a second session at least one week later (SI-2) and a third session, six hours after SI-2 to collect a sample containing the resultant acute inflammation caused in SI-2 (SI-3). Analysis of the SI-1 and SI-2 samples in all three groups had high amounts of variability between samples. The samples were taken at least one weak apart and the environmental stimuli on each participant outside of the testing sessions could not be controlled. For this reason, the SI-1 samples were not used for analysis; instead SI-2 and SI-3 samples were compared as they were same-day collections, reducing the probability of differences being due to anything other than the sputum induction. The gene expressions of the TFFs, SCGBs, HDACs and HATs were analysed using real-time PCR. Western blot analysis was performed to analyse the protein concentrations of the TFFs and SCGBs in secreted fractions of the sputum collection. Both the secreted and intracellular protein fractions collected from the sputum inductions for pre- and post-inflammation (SI-2, SI-3) samples of the N-A and A-BD groups were analysed using a proteomic method called iTRAQ. This allowed the comparison of the change in protein expression as a result of airway inflammation in each group. This technique was used as a discovery method to identify novel proteins that are modulated by induced acute airway inflammation. Any proteins of interest would then be further validated and used for future research. Inflammation was achieved in the SI-3 samples of the N-A group with a 21% unit increase in % neutrophils compared to SI-2 (p=0.01). The N-A group had a marked 5.5-fold decrease in HDAC1 gene expression in SI-3 compared to SI-2 (p=0.03). No differences were seen in any of the TFFs, SCGBs or any of the rest of the HDACs and HATs. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed increases in TFF1 and TFF3, and decreases in SCGB1A1 and SCGB3A2 for the majority of SI-3 samples compared to SI-2. The A-BD group also presented a marked increase in neutrophils in the SI-3 samples compared to SI-2 (27% unit increase, p=0.04). The A-BD group had a significant increase in TFF3 and SCGB1A1 gene expression concomitant with induced acute airway inflammation. A 7.3-fold increase in TFF3 (p=0.05) in SI-3 indicated that TFF3 is linked to inflammation in asthmatics. A 2.8-fold increase in SCGB1A1 (p=0.03) indicated that this gene is also up-regulated, suggesting that this SCGB is expressed to try to combat induced acute airway inflammation. No significant changes were seen in any of the other genes analysed. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. However, non-significant analysis of the data displayed an increase in TFF1 and TFF3, and a decrease in SCGB1A1 and SCGB3A2 in SI-3, similar to that seen in the N-A group. The A-ST group was different from the A-BD group, characterised by the use of inhaled corticosteroid medication to treat asthma symptoms. Inhaled corticosteroids are known to treat asthma symptoms through the control of inflammation. Therefore, it was expected that corticosteroid medication would also control the expression of TFFs, SCGBs, HATs and HDACs. Gene expression results only identified a 7.6-fold decrease in HDAC2 expression in SI-3 (p=0.001), which is proposed to be due to the up-regulation of HDAC2 protein that is known to be a function of corticosteroid use. Western blot data did not display any significant changes in the protein levels of the TFFs and SCGBs analysed. The gene expression in SI-2 and SI-3 in each group was compared. When comparing the A-BD group to the N-A group, a 9-fold increase in TFF3 (p=0.008) and a 34-fold increase in SCGB1A1 (p=0.03) were seen in the SI-3 samples. Comparisons of the A-ST group to the N-A group had an increased expression in SI-2 samples for HDAC5 (3.6-fold, p=0.04), NCOA2 (8.5-fold, p=0.04), NCOA3 (17-fold, p=0.01), HAT-1 (36-fold, p=0.003) and CREBBP (13-fold, p=0.001). The SI-3 samples in the A-ST group compared to the N-A group had increased expression for HDAC1 (6.4-fold, p=0.04), HDAC5 (5.2-fold, p=0.008), NCOA2 (9.6-fold, p=0.03), NCOA3 (16-fold, p=0.06), HAT-1 (41-fold, p<0.001) and CREBBP (31-fold, p=0.001). Comparisons of the A-ST group to the A-BD group had SI-2 increases in HDAC1 (3.8-fold, p=0.03), NCOA3 (4.5-fold, p=0.03), HAT-1 (5.3-fold, p=0.01) and CREBBP (23-fold, p=0.001), while SI-3 comparisons saw a decrease in HDAC2 (41-fold, p=0.008) and increases in HAT-1 (4.3-fold, p=0.003) and CREBBP (40-fold, p=0.001). Results showed that TFF3 and SCGB1A1 expression is higher in asthmatics than non-asthmatics and that histone acetylation is more active in the A-ST group than either the N-A or A-BD group, which suggests that histone acetylation activity may be positively correlated with asthma severity. The iTRAQ proteomic analysis of the secreted protein samples identified the SCGB1A1 protein and found it to be decreased in both the N-A and A-BD groups post-inflammation, but significantly so only in the A-BD group. Although no significant results were obtained from the western blot data, both groups displayed a decrease in SCGB1A1 concentration in SI-3 samples, suggesting a correlation with the proteomic data. Only 31 peptides were identified from the secreted samples. The intracellular iTRAQ analysis successfully identified 664 peptides, eight of which had differential expression in association with induced acute airway inflammation. Significant increases were seen in the A-BD group in SI-3 compared to SI-2 than in the N-A group in chloride intracellular channel protein 1, keratin-19, eosinophil cationic protein, calnexin, peroxiredoxin-5, and ATP-synthase delta subunit, while decreases were seen in cystatin-A and mucin-5AC. The iTRAQ analysis was only a discovery measure and further validation must be performed. In summary, the expression of TFFs and SCGBs differed between non-asthmatics and asthmatics. It is clear that TFF3 is active in the airway inflammation associated with asthma as indicated by an increase associated with inflammation in the A-BD group compared to the N-A group. Results for HDAC and HAT genes showed high HAT expression in the A-ST group compared to the N-A and A-BD groups, suggesting that histone acetyltransferases may be responsible for the characteristic unregulated inflammatory symptoms of asthmatics taking corticosteroids. Interestingly, corticosteroid medication did not seem to silence the expression of the analysed HAT genes, which indicates that corticosteroids may not control inflammation by direct regulation of HATs, but instead by competition, most probably with HDAC2 protein. As a discovery tool, iTRAQ is a potent method to both identify and compare the concentration of proteins between samples. The method is a powerful first step into the identification of novel proteins that are regulated in response to different treatments.
Resumo:
Focal segmental glomerulosclerosis (FSGS) is the consequence of a disease process that attacks the kidney's filtering system, causing serious scarring. More than half of FSGS patients develop chronic kidney failure within 10 years, ultimately requiring dialysis or renal transplantation. There are currently several genes known to cause the hereditary forms of FSGS (ACTN4, TRPC6, CD2AP, INF2, MYO1E and NPHS2). This study involves a large, unique, multigenerational Australian pedigree in which FSGS co-segregates with progressive heart block with apparent X-linked recessive inheritance. Through a classical combined approach of linkage and haplotype analysis, we identified a 21.19 cM interval implicated on the X chromosome. We then used a whole exome sequencing approach to identify two mutated genes, NXF5 and ALG13, which are located within this linkage interval. The two mutations NXF5-R113W and ALG13-T141L segregated perfectly with the disease phenotype in the pedigree and were not found in a large healthy control cohort. Analysis using bioinformatics tools predicted the R113W mutation in the NXF5 gene to be deleterious and cellular studies support a role in the stability and localization of the protein suggesting a causative role of this mutation in these co-morbid disorders. Further studies are now required to determine the functional consequence of these novel mutations to development of FSGS and heart block in this pedigree and to determine whether these mutations have implications for more common forms of these diseases in the general population.
A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura
Resumo:
Migraine with aura is a common, debilitating, recurrent headache disorder associated with transient and reversible focal neurological symptoms. A role has been suggested for the two-pore domain (K2P) potassium channel, TWIK-related spinal cord potassium channel (TRESK, encoded by KCNK18), in pain pathways and general anaesthesia. We therefore examined whether TRESK is involved in migraine by screening the KCNK18 gene in subjects diagnosed with migraine. Here we report a frameshift mutation, F139WfsX24, which segregates perfectly with typical migraine with aura in a large pedigree. We also identified prominent TRESK expression in migraine-salient areas such as the trigeminal ganglion. Functional characterization of this mutation demonstrates that it causes a complete loss of TRESK function and that the mutant subunit suppresses wild-type channel function through a dominant-negative effect, thus explaining the dominant penetrance of this allele. These results therefore support a role for TRESK in the pathogenesis of typical migraine with aura and further support the role of this channel as a potential therapeutic target.
Resumo:
The aim of this study was to investigate through direct sequencing the insulin receptor (INSR) gene in DNA samples from a migraine affected family previously showing linkage to chromosome 19p13 in an attempt to detect disease associated mutations. Migraine is a common debilitating disorder with a significant genetic component. At present, the number and type of genes involved in the common forms of migraine are not clear. The INSR gene on chromosome 19p13.3-13.2 is a gene of interest since a number of single nucleotide polymorphisms (SNPs) located within the gene have been implicated in migraine with (MA) and without aura (MO). Six DNA samples obtained from non-founding migraine affected members of migraine family 1 (MF1) were used in this study. Genomic DNA was sequenced for the INSR gene in exons 1-22 and the promoter region. In the six migraine family member samples, previously reported SNPs were detected within two exonic DNA coding regions of the INSR gene. These SNPs, in exons 13 and 17, do not alter the normal INSR polypeptide sequence. In addition, intron 7 also revealed a DNA base sequence variation. For the 5' untranslated promoter region of the gene, no mutations or polymorphisms were detected. In conclusion, this study detected no INSR mutations in affected members of a chromosome 19 linked migraine pedigree. Hence, migraine linkage to this chromosomal region may involve other candidate genes.
Resumo:
Migraine is a common complex disorder characterized by severe recurrent headache and usually accompanied by nausea and vomiting. Previous studies in our laboratory have utilized three large multigenerational Australian pedigrees affected with migraine to indicate that the disease is genetically heterogeneous, with linkage results implicating genomic susceptibility regions on both chromosomes 19p and Xq. The present study explores the possibility of a correlation between genetic and clinical heterogeneity in these affected pedigrees. Specifically, the clinical characteristics of migraine including subtype, age of onset, frequency, duration, and disease symptoms were compared between the migraine pedigrees, and gender differences were also assessed. Our exploratory analyses revealed no significant differences in any of the clinical characteristics tested between the chromosome 19-linked family and the two X-linked families. Also, we did not detect any differences in male vs. female clinical features for these pedigrees. In conclusion, migraine is considered to be a clinically and genetically heterogeneous disorder; however, our study provided no conclusive evidence that variation in genomic susceptibility region is related to heterogeneity at the clinical level in these migraine-affected pedigrees.
Resumo:
Migraine is a common complex disorder that shows strong familial aggregation. There is a general increased prevalence of migraine in females compared with males, with recent studies indicating that migraine affects 18% of females compared with 6% of males. This preponderance of females among migraine sufferers coupled with evidence of an increased risk of migraine in first degree relatives of male probands but not in relatives of female probands suggests the possibility of an X-linked dominant gene. We report here the localization of a typical migraine susceptibility locus to the X chromosome. Of three large multigenerational migraine pedigrees two families showed significant excess allele sharing to Xq markers (P = 0.031 and P = 0.012). Overall analysis of data from all three pedigrees gave significant evidence in support of linkage and heterogeneity (HLOD = 3.1). These findings provide conclusive evidence that familial typical migraine is a heterogeneous disorder. We suggest that the localization of a migraine susceptibility locus to the X chromosome could in part explain the increased risk of migraine in relatives of male probands and may be involved in the increased female prevalence of this disorder.
Resumo:
Family linkage studies were used to detect two linkage relationships on human chromosome 1. The B subunit of coagulation factor XIII showed significant linkage to renin with a maximum lod score of 5.071 at a distance of 10 cM. Significant linkage was also shown between the Duffy blood group and α-spectrin with linkage results giving a combined lod score of 3.194 at 5 cM.
Resumo:
A series of copolymers of trimethylene carbonate (TMC) and l-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young’s moduli of 1.2–1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.
Resumo:
In September 1998, an outbreak of gastroenteritis occurred in a coastal Aboriginal community in the Northern Territory over a seven day period. An investigation was conducted by the Center for Disease Control, Territory Health Services. Thirty-six cases were detected and 17% (n=6) were hospitalized. Salmonella chester was isolated from eight of nine stool specimens. Sixty-two percent of cases interviewed (n=28) reported consumption of a green turtle (Chelonia mydas) within a median of 24 hours prior to onset of illness. Of the remainder, all but two were contacts of other cases. Salmonella chester was isolated from a section of partially cooked turtle meat. There are no previous published reports of salmonellosis associated with consumption of sea turtles despite them being a popular food source in coastal communities in the Pacific.
Resumo:
On 18 September 1998 the Centre for Disease Control (CDC), Darwin was notified of an outbreak of gastroenteritis predominantly affecting adults in a Top End coastal community. There had been no previous presentations to the community clinic in the month of September with vomiting or diarrhoea. On 14 September, a green turtle (Chledonia mydas) was cooked and distributed throughout the community. Water collected from a water hole near the community (known as the aerator) was used as drinking water at the cook site and to cook the meat. In addition, there were reports that kava, a plant derived tranquilliser,1 had been consumed the night before using water from the same source. An investigation was conducted to determine the aetiology and source and to instigate prevention and control measures.
Resumo:
Exogenous prostacyclin is effective in reducing pulmonary vascular resistance in some forms of human pulmonary hypertension (PH). To explore whether endogenous prostaglandins played a similar role in pulmonary hypertension, we examined the effect of deleting cyclooxygenase (COX)-gene isoforms in a chronic hypoxia model of PH. Pulmonary hypertension, examined by direct measurement of right ventricular end systolic pressure (RVESP), right ventricular hypertrophy (n = 8), and hematocrit (n = 3), was induced by 3 weeks of hypobarichypoxia in wild-type and COX-knockout (KO) mice. RVESP was increased in wild-type hypoxic mice compared with normoxic controls (24.4 ± 1.4 versus 13.8 ± 1.9 mm Hg; n = 8; p < 0.05). COX-2 KO mice showed a greater increase in RVESP following hypoxia (36.8 ± 2.7 mm Hg; p < 0.05). Urinary thromboxane (TX)B2 excretion increased following hypoxia (44.6 ± 11.1 versus 14.7 ± 1.8 ng/ml; n = 6; p < 0.05), an effect that was exacerbated by COX-2 gene disruption (54.5 ± 10.8 ng/ml; n = 6). In contrast, the increase in 6-keto-prostacyclin1α excretion following hypoxia was reduced by COX-2 gene disruption (29 ± 3 versus 52 ± 4.6 ng/ml; p < 0.01). Tail cut bleed times were lower following hypoxia, and there was evidence of intravascular thrombosis in lung vessels that was exacerbated by disruption of COX-2 and reduced by deletion of COX-1. The TXA2/endoperoxide receptor antagonist ifetroban (50 mg/kg/day) offset the effect of deleting the COX-2 gene, attenuating the hypoxia-induced rise in RVESP and intravascular thrombosis. COX-2 gene deletion exacerbates pulmonary hypertension, enhances sensitivity to TXA2, and induces intravascular thrombosis in response to hypoxia. The data provide evidence that endogenous prostaglandins modulate the pulmonary response to hypoxia. Copyright © 2008 by The American Society for Pharmacology and Experimental Therapeutics.
Resumo:
Somatostatin analogue scintigraphy represents a new technique employing radiolabelled peptides to detect specific receptor-bearing lesions. 111Indium diethylenetriaminopentaacetic acid-linked octreotide (111In-DTPA-D-Phe1 octreotide), also known as [111In]pentetreotide or OctreoScan, is now established in the management of patients with neuroendocrine gastrointestinal tract and pancreatic tumours, and has proved effective in localizing disease sites in lung, breast and medullary thyroid carcinomas, lymphomas, meningiomas and others. In these conditions (a) the imaging of all disease sites at a single sitting (in a proportion of patients) thereby making further investigations unnecessary, (b) the localization of otherwise unexpected metastatic deposits and (c) the detection of residual disease not found by other means suggest that [111In]pentetreotide may be a useful adjunct in the diagnostic evaluation of patients with somatostatin receptor-bearing tumours.
Resumo:
Introduction: Ondansetron is a 5-HT3 receptor antagonist commonly used as an anti-emetic to prevent the nausea and vomiting associated with anti-cancer drugs, cancer radiotherapy, or postoperatively. Recently, the US Food and Drug Administration (FDA) issued a warning for ondansetron due to a potential for prolongation of the QT interval of the electrocardiogram (ECG), a phenomenon that is associated with an increased risk of the potentially fatal arrhythmia torsade de pointes. Areas covered: We undertook a review of the cardiac safety of ondansetron. Our primary sources of information were PubMed (with downloading of full articles), and the internet. Expert opinion: The dose of ondansetron that the FDA has concerns about is 32 mg iv (or several doses that are equivalent to this), which is only used in preventing nausea and vomiting associated with cancer chemotherapy. This suggests that ondansetron may be safe in the lower doses used to prevent the nausea and vomiting in radiation treatment or postoperatively. However, as there is a report that a lower dose of ondansetron prolonged the QT interval in healthy volunteers, this needs to be clarified by the FDA. More research needs to be undertaken of the relationship between QT prolongation and torsades in order that the FDA can produce clear-cut evidence of pro-arrhythmic risk when introducing warnings for this.
Resumo:
Access to dietetic care is important in chronic disease management and innovative technologies assists in this purpose. Photographic dietary records (PhDR) using mobile phones or cameras are valid and convenient for patients. Innovations in providing dietary interventions via telephone and computer can also inform dietetic practice. Three studies are presented. A mobile phone method was validated by comparing energy intake (EI) to a weighed food record and a measure of energy expenditure (EE) obtained using the doubly labelled water technique in 10 adults with T2 diabetes. The level of agreement between mean (±sd) energy intake mobile phone (8.2±1.7 MJ) and weighed record (8.5±1.6 MJ) was high (p=0.392), however EI/EE for both methods gave similar levels of under-reporting (0.69 and 0.72). All subjects preferred using the mobile phone vs. weighed record. Nineteen individuals with Parkinsons disease kept 3-day PhDRs on three occasions using point-and-shoot digital cameras over a 12 week period. The camera was rated as easy to use by 89%, keeping a PhDR was considered acceptable by 94% and none would rather use a “pen and paper” method. Eighty-three percent felt confident to use the camera again to record intake. An interactive, automated telephone system designed to coach people with T2 diabetes to adopt and maintain diabetes self-care behaviours, including nutrition, showed trends for improvements in total fat, saturated fat and vegetable intake of the intervention group compared to control participants over 6 months. Innovative technologies are acceptable to patients with chronic conditions and can be incorporated into dietetic care.