963 resultados para LCR F-Box
Resumo:
When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries.
Resumo:
The paper presents a method of analyzing Rigid Frames by use of the Conjugate Beam Theory. The development of the method along with an example is given. This method has been used to write a computer program for the analysis of twin box culverts. The culverts may be analyzed under any fill height and any of the standard truck loadings. The wall and slab thickness are increased by the computer program as necessary. The final result is steel requirements both for moment and shear, and the slab and wall thickness.
Resumo:
Introduction : la Physiopathologie maternelle de la prééclampsie s'associe typiquement à un état inflammatoire systémique modéré. La protéine "high mobility group box 1" (HMGB-1) est une protéine nucléaire ubiquitaire. En cas de stress cellulaire, elle est relâchée dans le milieu extrace llua li re et peut ainsi exercer son activité pro-inflammatoire. En cas de prééclampsie, le liquide amniotique et le cytoplasme des cellules trophoblastiques contiennent des quantités anormalement élevées de HMGB-1, mais il n'est toujours pas universellement admis que ces concentrations se retrouvent dans le sang maternel. Méthodes : nous avons recruté 32 femmes au troisième trimestre de grossesse, 16 avec et 16 sans prééclampsie. Nous avons également observé 16 femmes non enceintes et en bonne santé, appariées selon l'âge avec les femmes enceintes. Nous avons mesuré la concentration sérique de HMGB-1 chez les femmes enceintes avant, puis 24-48 heures après leur accouchement, en utilisant un kit ELISA commercial. Le même dosage a été réalisé chez les femmes non enceintes, mais à une seule reprise, au moment de leur inclusion dans l'étude. Résultats : le jour de leur inclusion dans l'étude, la concentration médiane [intervalle interquartile] de HMGB-1 chez les femmes enceintes prééclamptiques était de 2.1 ng/ml [1.1 - 3.2], de 1.1 [1.0-1.2] chez les grossesses saines (p < 0.05 vs groupe prééclamptiques) et de 0.6 [0.5 - 0.8] chez les patientes non enceintes (p < 0.01 vs deux autres groupes). Pour les deux groupes de femmes enceintes, les concentrations mesurées en post-partum ne variaient pas significativement de celles mesurées avant l'accouchement. Conclusion : avec ou sans prééclampsie, le troisième triemstre de la grossesse est associé à une élévation des taux circulants de HMGB-1. Cette augmentation est exagérée en cas de prééclampsie. L'origine de ces concentrations élevées reste à déterminer, mais elle semble impliquer d'autres organes que le placenta lui-même.
Resumo:
Kuvataidenäyttely Galleria Forum Boxissa Helsingissä Riikka Kuoppalan, Pekka Niskasen kanssa. Videoteokset Yksi ja monta (One and Many) ja Nitan King (Nita´s King), 2010
Resumo:
The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.
Resumo:
DEAD-box proteins comprise a family of ATP-dependent RNA helicases involved in several aspects of RNA metabolism. Here we report the characterization of the human DEAD-box RNA helicase DDX26. The gene is composed of 14 exons distributed over an extension of 8,123 bp of genomic sequence and encodes a transcript of 1.8 kb that is expressed in all tissues evaluated. The predicted amino acid sequence shows a high similarity to a yeast DEAD-box RNA helicase (Dbp9b) involved in ribosome biogenesis. The new helicase maps to 7p12, a region of frequent chromosome amplifications in glioblastomas involving the epidermal growth factor receptor (EGFR) gene. Nevertheless, co-amplification of DDX26 with EGFR was not detected in nine tumors analyzed.
Resumo:
The fetal hemoglobin (HbF) levels and ßS-globin gene haplotypes of 125 sickle cell anemia patients from Brazil were investigated. We sequenced the Gg- and Ag-globin gene promoters and the DNase I-2 hypersensitive sites in the locus control regions (HS2-LCR) of patients with HbF level disparities as compared to their ßS haplotypes. Sixty-four (51.2%) patients had CAR/Ben genotype; 36 (28.8%) Ben/Ben; 18 (14.4%) CAR/CAR; 2 (1.6%) CAR/Atypical; 2 (1.6%) Ben/Cam; 1 (0.8%) CAR/Cam; 1 (0.8%) CAR/Arab-Indian, and 1 (0.8%) Sen/Atypical. The HS2-LCR sequence analyses demonstrated a c.-10.677G>A change in patients with the Ben haplotype and high HbF levels. The Gg gene promoter sequence analyses showed a c.-157T>C substitution shared by all patients, and a c.-222_-225del related to the Cam haplotype. These results identify new polymorphisms in the HS2-LCR and Gg-globin gene promoter. Further studies are required to determine the correlation between HbF synthesis and the clinical profile of sickle cell anemia patients.
Resumo:
High mobility group box 1 (HMGB1) was discovered as a novel late-acting cytokine that contributes to acute lung injury (ALI). However, the contribution of HMGB1 to two-hit-induced ALI has not been investigated. To examine the participation of HMGB1 in the pathogenesis of ALI caused by the two-hit hypothesis, endotoxin was injected intratracheally in a hemorrhagic shock-primed ALI mouse model. Concentrations of HMGB1 in the lung of the shock group were markedly increased at 16 h (1.63 ± 0.05, compared to the control group: 1.02 ± 0.03; P < 0.05), with the highest concentration being observed at 24 h. In the sham/lipopolysaccharide group, lung HMGB1 concentrations were found to be markedly increased at 24 h (1.98 ± 0.08, compared to the control group: 1.07 ± 0.03; P < 0.05). Administration of lipopolysaccharide to the hemorrhagic shock group resulted in a notable HMGB1 increase by 4 h, with a further increase by 16 h. Intratracheal lipopolysaccharide injection after hemorrhagic shock resulted in the highest lung leak at 16 h (2.68 ± 0.08, compared to the control group: 1.05 ± 0.04; P < 0.05). Compared to the hemorrhagic shock/lipopolysaccharide mice, blockade of HMGB1 at the same time as lipopolysaccharide injection prevented significantly pulmonary tumor necrosis factor-alpha, interleukin-1beta and myeloperoxidase. Lung leak was also markedly reduced at 16 h; blockade of HMGB1 24 h after lipopolysaccharide injection failed to alter lung leak or myeloperoxidase at 48 h. Our observations suggest that HMGB1 plays a key role as a late mediator when lipopolysaccharide is injected after hemorrhagic shock-primed ALI and the kinetics of its release differs from that of one-hit ALI. The therapeutic window to suppress HMGB1 activity should not be delayed to 24 h after the disease onset.
Resumo:
In this study, we investigated the potential role of high-mobility group box 1 (HMGB1) in severe acute pancreatitis (SAP) and the effects of growth hormone (G) and somatostatin (S) in SAP rats. The rats were randomly divided into 6 groups of 20 each: sham-operated, SAP, SAP+saline, SAP+G, SAP+S and SAP+G+S. Ileum and pancreas tissues of rats in each group were evaluated histologically. HMGB1 mRNA expression was measured by reverse transcription-PCR. Levels of circulating TNF-α, IL-1, IL-6, and endotoxin were also measured. In the SAP group, interstitial congestion and edema, inflammatory cell infiltration, and interstitial hemorrhage occurred in ileum and pancreas tissues. The levels of HMGB1, TNF-α, IL-1, IL-6 and endotoxin were significantly up-regulated in the SAP group compared with those in the sham-operated group, and the 7-day survival rate was 0%. In the SAP+G and SAP+S groups, the inflammatory response of the morphological structures was alleviated, the levels of HMGB1, TNF-α, IL-1, IL-6, and endotoxin were significantly decreased compared with those in the SAP group, and the survival rate was increased. Moreover, in the SAP+G+S group, all histological scores were significantly improved and the survival rate was significantly higher compared with the SAP group. In conclusion, HMGB1 might participate in pancreas and ileum injury in SAP. Growth hormone and somatostatin might play a therapeutic role in the inflammatory response of SAP.
Resumo:
The box contained the chocolate elephant.