265 resultados para LCA
Resumo:
Objective The review addresses two distinct sets of issues: 1. specific functionality, interface, and calculation problems that presumably can be fixed or improved; and 2. the more fundamental question of whether the system is close to being ready for ‘commercial prime time’ in the North American market. Findings Many of our comments relate to the first set of issues, especially sections B and C. Sections D and E deal with the second set. Overall, we feel that LCADesign represents a very impressive step forward in the ongoing quest to link CAD with LCA tools and, more importantly, to link the world of architectural practice and that of environmental research. From that perspective, it deserves continued financial support as a research project. However, if the decision is whether or not to continue the development program from a purely commercial perspective, we are less bullish. In terms of the North American market, there are no regulatory or other drivers to press design teams to use a tool of this nature. There is certainly interest in this area, but the tools must be very easy to use with little or no training. Understanding the results is as important in this regard as knowing how to apply the tool. Our comments are fairly negative when it comes to that aspect. Our opinion might change to some degree when the ‘fixes’ are made and the functionality improved. However, as discussed in more detail in the following sections, we feel that the multi-step process — CAD to IFC to LCADesign — could pose a serious problem in terms of market acceptance. The CAD to IFC part is impossible for us to judge with the information provided, and we can’t even begin to answer the question about the ease of using the software to import designs, but it appears cumbersome from what we do know. There does appear to be a developing North American market for 3D CAD, with a recent survey indicating that about 50% of the firms use some form of 3D modeling for about 75% of their projects. However, this does not mean that full 3D CAD is always being used. Our information suggests that AutoDesk accounts for about 75 to 80% of the 3D CAD market, and they are very cautious about any links that do not serve a latent demand. Finally, other system that link CAD to energy simulation are using XML data transfer protocols rather than IFC files, and it is our understanding that the market served by AutoDesk tends in that direction right now. This is a subject that is outside our area of expertise, so please take these comments as suggestions for more intensive market research rather than as definitive findings.
Resumo:
Manufacture, construction and use of buildings and building materials make a significant environmental impact internally (inside the building), locally (neighbourhood) and globally. Life cycle assessment (LCA) methodology is being applied for evaluating the environmental impact of building/or building materials. One of the major applications of LCA is to identify key issues of a product system from cradle to grave. Key issues identified in an LCA lead one to the right direction in assessing the environmental aspects of a product system and help to identify the areas for improvement of the environmental performance of a product as well. The purpose of this paper is to suggest two methods for identifying key issues using an integrated tool (LCADesign), which has been developed to provide a method of determining the best alternative for reducing environmental impacts from a building or building materials, and compare both methods in the case study. This paper assists the designers or marketers related to building or building materials in their decision making by giving information on activities or alternatives which are identified as key issues for environmental impacts.
Resumo:
Understanding the differences between the temporal and physical aspects of the building life cycle is an essential ingredient in the development of Building Environmental Assessment (BEA) tools. This paper illustrates a theoretical Life Cycle Assessment (LCA) framework aligning temporal decision-making with that of material flows over building development phases. It was derived during development of a prototype commercial building design tool that was based on a 3-D CAD information and communications technology (ICT) platform and LCA software. The framework aligns stakeholder BEA needs and the decision-making process against characteristics of leading green building tools. The paper explores related integration of BEA tool development applications on such ICT platforms. Key framework modules are depicted and practical examples for BEA are provided for: • Definition of investment and service goals at project initiation; • Design integrated to avoid overlaps/confusion over the project life cycle; • Detailing the supply chain considering building life cycle impacts; • Delivery of quality metrics for occupancy post-construction/handover; • Deconstruction profiling at end of life to facilitate recovery.
Resumo:
Definition of disease phenotype is a necessary preliminary to research into genetic causes of a complex disease. Clinical diagnosis of migraine is currently based on diagnostic criteria developed by the International Headache Society. Previously, we examined the natural clustering of these diagnostic symptoms using latent class analysis (LCA) and found that a four-class model was preferred. However, the classes can be ordered such that all symptoms progressively intensify, suggesting that a single continuous variable representing disease severity may provide a better model. Here, we compare two models: item response theory and LCA, each constructed within a Bayesian context. A deviance information criterion is used to assess model fit. We phenotyped our population sample using these models, estimated heritability and conducted genome-wide linkage analysis using Merlin-qtl. LCA with four classes was again preferred. After transformation, phenotypic trait values derived from both models are highly correlated (correlation = 0.99) and consequently results from subsequent genetic analyses were similar. Heritability was estimated at 0.37, while multipoint linkage analysis produced genome-wide significant linkage to chromosome 7q31-q33 and suggestive linkage to chromosomes 1 and 2. We argue that such continuous measures are a powerful tool for identifying genes contributing to migraine susceptibility.
Resumo:
Road construction, maintenance and operation are activities that impact the environment by way of energy use, resource consumption and emission. Components such as construction material, transportation, street lighting, rolling resistance, traffic congestion during works, albedo and end-of-life processing impact the environment at different phases of the life of a road. With a view to promote sustainable development, a few sustainability rating schemes, e.g. Infrastructure Sustainability and Invest (Australia), Envision and Greenroads (USA), and CEEQUAL (UK) have been developed, that can assess road projects. These schemes address environmental areas such as: energy and emission, land, water, materials, discharges into surroundings, waste and ecology as factors for sustainable development. This paper assesses different rating schemes based on a defined comprehensive life cycle assessment (LCA) system boundary for road projects to identify different environmental indicators that address sustainable road development and operation. The findings indicate that new indicators are required to address different environmental components during the operation phase of roads.
Resumo:
Road infrastructure has been considered as one of the most expensive and extensive infrastructure assets of the built environment globally. This asset also impacts the natural environment significantly during different phases of life e.g. construction, use, maintenance and end-of-life. The growing emphasis for sustainable development to meet the needs of future generations requires mitigation of the environmental impacts of road infrastructure during all phases of life e.g. construction, operation and end-of-life disposal (as required). Life-cycle analysis (LCA), a method of quantification of all stages of life, has recently been studied to explore all the environmental components of road projects due to limitations of generic environmental assessments. The LCA ensures collection and assessment of the inputs and outputs relating to any potential environmental factor of any system throughout its life. However, absence of a defined system boundary covering all potential environmental components restricts the findings of the current LCA studies. A review of the relevant published LCA studies has identified that environmental components such as rolling resistance of pavement, effect of solar radiation on pavement(albedo), traffic congestion during construction, and roadway lighting & signals are not considered by most of the studies. These components have potentially higher weightings for environment damage than several commonly considered components such as materials, transportation and equipment. This paper presents the findings of literature review, and suggests a system boundary model for LCA study of road infrastructure projects covering potential environmental components.
Resumo:
The construction and operation of infrastructure assets can have significant impact on society and the region. Using a sustainability assessment framework can be an effective means to build sustainability aspects into the design, construction and operation of infrastructure assets. The conventional evaluation processes and procedures for infrastructure projects do not necessarily measure the qualitative/quantitative effectiveness of all aspects of sustainability: environment, social wellbeing and economy. As a result, a few infrastructure sustainability rating schemes have been developed with a view to assess the level of sustainability attained in the infrastructure projects. These include: Infrastructure Sustainability (Australia); CEEQUAL (UK); and Envision (USA). In addition, road sector specific sustainability rating schemes such as Greenroads (USA) and Invest (Australia) have also been developed. These schemes address several aspects of sustainability with varying emphasis (weightings) on areas such as: use of resources; emission, pollution and waste; ecology; people and place; management and governance; and innovation. The attainment of sustainability of an infrastructure project depends largely on addressing the whole-of-life environmental issues. This study has analysed the rating schemes’ coverage of different environmental components for the road infrastructure under the five phases of a project: material, construction, use, maintenance and end-of-life. This is based on a comprehensive life cycle assessment (LCA) system boundary. The findings indicate that there is a need for the schemes to consider key (high impact) life cycle environmental components such as traffic congestion during construction, rolling resistance due to surface roughness and structural stiffness of the pavement, albedo, lighting, and end-of-life management (recycling) to deliver sustainable road projects.
Resumo:
The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.
Resumo:
Context Cancer patients experience a broad range of physical and psychological symptoms as a result of their disease and its treatment. On average, these patients report ten unrelieved and co-occurring symptoms. Objectives To determine if subgroups of oncology outpatients receiving active treatment (n=582) could be identified based on their distinct experience with thirteen commonly occurring symptoms; to determine whether these subgroups differed on select demographic, and clinical characteristics; and to determine if these subgroups differed on quality of life (QOL) outcomes. Methods Demographic, clinical, and symptom data from one Australian and two U.S. studies were combined. Latent class analysis (LCA) was used to identify patient subgroups with distinct symptom experiences based on self-report data on symptom occurrence using the Memorial Symptom Assessment Scale (MSAS). Results Four distinct latent classes were identified (i.e., All Low (28.0%), Moderate Physical and Lower Psych (26.3%), Moderate Physical and Higher Psych (25.4%), All High (20.3%)). Age, gender, education, cancer diagnosis, and presence of metastatic disease differentiated among the latent classes. Patients in the All High class had the worst QOL scores. Conclusion Findings from this study confirm the large amount of interindividual variability in the symptom experience of oncology patients. The identification of demographic and clinical characteristics that place patients are risk for a higher symptom burden can be used to guide more aggressive and individualized symptom management interventions.
Resumo:
Due to the increasing recognition of global climate change, the building and construction industry is under pressure to reduce carbon emissions. A central issue in striving towards reduced carbon emissions is the need for a practicable and meaningful yardstick for assessing and communicating greenhouse gas (GHG) results. ISO 14067 was published by the International Organization for Standardization in May 2013. By providing specific requirements in the life cycle assessment (LCA) approach, the standard clarifies the GHG assessment in the aspects of choosing system boundaries and simulating use and end-of-life phases when quantifying carbon footprint of products (CFPs). More importantly, the standard, for the first time, provides step-to-step guidance and standardized template for communicating CFPs in the form of CFP external communication report, CFP performance tracking report, CFP declaration and CFP label. ISO 14067 therefore makes a valuable contribution to GHG quantification and transparent communication and comparison of CFPs. In addition, as cradle-to-grave should be used as the system boundary if use and end-of-life phases can be simulated, ISO 14067 will hopefully promote the development and implementation of simulation technologies, with Building Information Modelling (BIM) in particular, in the building and construction industry.
Resumo:
Textile waste is a significant contributor to landfill yet the majority of textiles can be recycled, allowing for the energy and fibre to be reclaimed. This chapter examines the open-loop and closed loop recycling of textile products with particular reference to the fashion and apparel context. It describes the fibres used within apparel, the current mechanical and chemical methods for textile recycling, LCA findings for each method, and applications within apparel for each. Barriers for more effective recycling include ease of integration into existing textile and apparel design methods as well as coordinated collection of post-consumer waste. The chapter concludes with a discussion of innovations that point to future trends in both open-loop and closed-loop recycling within the apparel industry.
Resumo:
We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.
Resumo:
Latent class analysis was performed on migraine symptom data collected in a Dutch population sample (N = 12,210, 59% female) in order to obtain empirical groupings of individuals suffering from symptoms of migraine headache. Based on these heritable groupings (h(2) = 0.49, 95% CI: 0.41-0.57) individuals were classified as affected (migrainous headache) or unaffected. Genome-wide linkage analysis was performed using genotype data from 105 families with at least 2 affected siblings. In addition to this primary phenotype, linkage analyses were performed for the individual migraine symptoms. Significance levels, corrected for the analysis of multiple traits, were determined empirically via a novel simulation approach. Suggestive linkage for migrainous headache was found on chromosomes 1 (LOD = 1.63; pointwise P = 0.0031), 13 (LOD = 1.63; P = 0.0031), and 20 (LOD = 1.85; P = 0.0018). Interestingly, the chromosome 1 peak was located close to the ATP1A2 gene, associated with familial hemiplegic migraine type 2 (FHM2). Individual symptom analysis produced a LOD score of 1.97 (P = 0.0013) on chromosome 5 (photo/phonophobia), a LOD score of 2.13 (P = 0.0009) on chromosome 10 (moderate/severe pain intensity) and a near significant LOD score of 3.31 (P = 0.00005) on chromosome 13 (pulsating headache). These peaks were all located near regions previously reported in migraine linkage studies. Our results provide important replication and support for the presence of migraine susceptibility genes within these regions, and further support the utility of an LCA-based phenotyping approach and analysis of individual symptoms in migraine genetic research. Additionally, our novel "2-step" analysis and simulation approach provides a powerful means to investigate linkage to individual trait components.
Resumo:
It is often debated whether migraine with aura (MA) and migraine without aura (MO) are etiologically distinct disorders. A previous study using latent class analysis (LCA) in Australian twins showed no evidence for separate subtypes of MO and MA. The aim of the present study was to replicate these results in a population of Dutch twins and their parents, siblings and partners (N = 10,144). Latent class analysis of International Headache Society (IHS)-based migraine symptoms resulted in the identification of 4 classes: a class of unaffected subjects (class 0), a mild form of nonmigrainous headache (class 1), a moderately severe type of migraine (class 2), typically without neurological symptoms or aura (8% reporting aura symptoms), and a severe type of migraine (class 3), typically with neurological symptoms, and aura symptoms in approximately half of the cases. Given the overlap of neurological symptoms and nonmutual exclusivity of aura symptoms, these results do not support the MO and MA subtypes as being etiologically distinct. The heritability in female twins of migraine based on LCA classification was estimated at .50 (95% confidence intervals [CI] .27 - .59), similar to IHS-based migraine diagnosis (h2 = .49, 95% CI .19-.57). However, using a dichotomous classification (affected-unaffected) decreased heritability for the IHS-based classification (h2 = .33, 95% CI .00-.60), but not the LCA-based classification (h2 = .51, 95% CI .23-.61). Importantly, use of the LCA-based classification increased the number of subjects classified as affected. The heritability of the screening question was similar to more detailed LCA and IHS classifications, suggesting that the screening procedure is an important determining factor in genetic studies of migraine.
Resumo:
Familial typical migraine is a common, complex disorder that shows strong familial aggregation. Using latent-class analysis (LCA), we identified subgroups of people with migraine/severe headache in a community sample of 12,245 Australian twins (60% female), drawn from two cohorts of individuals aged 23-90 years who completed an interview based on International Headache Society criteria. We report results from genomewide linkage analyses involving 756 twin families containing a total of 790 independent sib pairs (130 affected concordant, 324 discordant, and 336 unaffected concordant for LCA-derived migraine). Quantitative-trait linkage analysis produced evidence of significant linkage on chromosome 5q21 and suggestive linkage on chromosomes 8, 10, and 13. In addition, we replicated previously reported typical-migraine susceptibility loci on chromosomes 6p12.2-p21.1 and 1q21-q23, the latter being within 3 cM of the rare autosomal dominant familial hemiplegic migraine gene (ATP1A2), a finding which potentially implicates ATP1A2 in familial typical migraine for the first time. Linkage analyses of individual migraine symptoms for our six most interesting chromosomes provide tantalizing hints of the phenotypic and genetic complexity of migraine. Specifically, the chromosome 1 locus is most associated with phonophobia; the chromosome 5 peak is predominantly associated with pulsating headache; the chromosome 6 locus is associated with activity-prohibiting headache and photophobia; the chromosome 8 locus is associated with nausea/vomiting and moderate/severe headache; the chromosome 10 peak is most associated with phonophobia and photophobia; and the chromosome 13 peak is completely due to association with photophobia. These results will prove to be invaluable in the design and analysis of future linkage and linkage disequilibrium studies of migraine.