931 resultados para LAYERS IN-VIVO
Resumo:
A synthetic Synechocystis sp. PCC6803 DnaB split mini-intein gene was constructed for the in vivo cyclization of recombinant proteins expressed in Escherichia coli. The system was used to cyclize the NH2-terminal domain of E. coli DnaB, the structure of which had been determined previously by NMR spectroscopy. Cyclization was found to proceed efficiently, with little accumulation of precursor, and the product was purified in high yield. The solution structure of cyclic DnaB-N is not significantly different from that of linear DnaB-N and it unfolds reversibly at temperatures similar to14 degreesC higher. Improved hydrogen bonding was observed in the first and last helices, and the length of the last helix was increased, while the 9-amino acid linker used to join the NH2 and COOH termini was found to be highly mobile. The measured thermodynamic stabilization of the structure (DeltaDeltaG approximate to 2 kcal/mol) agrees well with the value estimated from the reduced conformational entropy in the unfolded form. Simple polymer theory can be used to predict likely free energy changes resulting from protein cyclization and how the stabilization depends on the size of the protein and the length of the linker used to connect the termini.
Calcium Carbonate Particle Growth Depending on Coupling among Adjacent Layers in Hybrid LB/LbL Films
Resumo:
There are practical and academic situations that justify the study of calcium carbonate crystallization and especially of systems that are associated with organic matrices and a confined medium. Despite the fact that many different matrices have been studied, the use of well-behaved, thin organic films may provide new knowledge about this system. In this work, we have studied the growth of calcium carbonate particles on well-defined organic matrices that were formed by layer-by-layer (LbL) polyelectrolyte films deposited on phospholipid Langmuir-Blodgett films (LB). We were able to change the surface electrical charge density of the LB films by changing the proportions of a negatively charged lipid, the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid (DMPA), and a zwitterionic lipid. dimyristoyl-sn-glycero-phosphatidylethanolamine (DMPE). This affects the subsequent polyelectrolyte LbL film deposition, which also changes the the nature of the bonding (electrostatic interaction or hydrogen bonding). This approach allowed for the formation of calcium carbonate particles of different final shapes, roughnesses, and sizes. The masses of deposited lipids, polyelectrolytes, and calcium cabonate were quantified by the quartz crystal microbalance technique. The structures of obtained particles were analyzed by scanning electron microscopy.
Resumo:
Serotonin (5-HT) plays a key role in the neural circuitry mediating unconditioned and conditioned fear responses related to panic and generalized anxiety disorders. The basolateral nucleus of the amygdala (BLA) and the dorsal periaqueductal gray (dPAG) appear to be mainly involved in these conditions. The aim of this study was to measure the extracellular level of 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) in the BLA and dPAG during unconditioned and conditioned fear states using in vivo microdialysis procedure. Thus, for the unconditioned fear test, animals were chemically stimulated in the dPAG with semicarbazide, an inhibitor of the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase. For the conditioned fear test, animals were subjected to a contextual conditioned fear paradigm using electrical footshock as the unconditioned stimulus. The results show that the 5-HT and 5-HIAA level in the BLA and dPAG did not change during unconditioned fear, whereas 5-HT concentration, but not 5-HIAA concentration, increased in these brain areas during conditioned fear. The present study showed that the 5-HT system was activated during conditioned fear, whereas it remained unchanged during unconditioned fear, supporting the hypothesis that 5-HT has distinct roles in conditioned and unconditioned fear (dual role of 5-HT in anxiety disorders). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Epithelial malignancies are common in immunosuppressed individuals and the general population. However the mechanisms by which the adaptive immune system can eliminate immunogenic epithelial cells remain undefined. The aim of this project was to determine the effector molecules required for induction of apoptosis in murine epidermal keratinocytes (MEKs) in vitro and in vivo. HPV16E7-specific CTL lines and T cell receptor transgenic (E7TCRtg) effector cells were obtained from wild type (wt)-C57 and syngeneic mice rendered functionally inactive for perforin (Pfp), interferon-g (IFN-g) or FasL. CTLs or E7TCRtg spleen cells were co-cultured with primary MEKs in vitro or transferred into skin graft recipients. Inhibition of colony formation and skin graft rejection were used as indicators of T cell:KC interaction. Wt E7-specific CTLs and CTLs deficient in perforin, FasL or IFN-g produced mean reductions in colony formation of 67% (62.4–71.3%), 72% (71.1–72%), 76% (73–78%) and 21.5% (14– 34%) respectively. Wt, perforin deficient or FasL deficient CTLs all induced rejection of skin grafts (wt: 6/12; Pfp: 9/15; FasL: 3/13 survival). Transfer and immunisation of wt E7TCRtg spleen cells induces rejection of 50% of grafts (4/8 survival). In contrast, perforin or IFN-g deficient E7TCRtg failed to induce graft rejection (5/6; 4/4 survival). FasL deficient E7TCRtg induced nonspecific rejection of grafts (E7- 2/6 survival; C57- 4/7 survival). Therefore IFN-g production by CTL is necessary and sufficient in vitro and in vivo to kill epithelial cells which express a nonself antigen. Assessment of immunotherapies directed against epithelial tissues may be more effectively achieved by assaying the amount of IFN-g production by CD8 T cells, and the number and affinity of those cells, in conjunction with quantitation of perforin mediated effects in short term assays.
Resumo:
Objective: GH secretagogues (GHS) produce exaggerated ACTH and cortisol responses in Cushing`s disease (CD) patients, attributable to their direct action on GH-releasing peptide receptor type la (GHSR-1a). However, there are no studies correlating the ill vivo response to GHS and GHSR-1a mRNA expression in ACTH-dependent Cushing`s syndrome (CS) patients. The aim of this study is to correlate the patterns of ACTH and cortisol response to GH-releasing peptide-6 (GHRP-6) to GHSR-1a expression in ACTH-dependent CS patients Design: Prospective study in a tertiary referral hospital center. Fifteen CD patients and two ectopic ACTH syndrome (EAS) patients were studied. Methods: Tumor fragments were submitted to RNA extraction, and GHSR-1a expression was studied through real-time qPCR and compared with normal tissue samples. The patients were also submitted to desmopressin test and vasopressin receptor type 1B (AVPR1B) mRNA analysis by qPCR. Results: GHSR-1a expression was similar in normal pituitary samples and in corticotrophic tumor samples. GHSR-1a expression was higher in patients (CD and EAS) presenting ill vivo response to GHRP-6. Higher expression of AVPR1B was observed in the EAS patients responsive to desmopressin, as well as in corticotrophic tumors, as compared with normal pituitary samples, but no correlation between AVPR1B expression and response to desmopressin was observed in the CD patients. Conclusions: Our results revealed a higher expression of GHSR-1a in the ACTH-dependent CS patients responsive to GHRP-6, suggesting an association between receptor gene expression and ill vivo response to the secretagogue in both the CD and the EAS patients.
Resumo:
This study aimed to investigate bone responses to a novel bioactive fully crystallized glass-ceramic of the quaternary system P(2)O(5)-Na(2)O-CaO-SiO(2) (Biosilicates (R)). Although a previous study demonstrated positive effects of Biosilicate (R) on in vitro bone-like matrix formation, its in vivo effect was not studied yet. Male Wistar rats (n = 40) with tibial defects were used. Four experimental groups were designed to compare this novel biomaterial with a gold standard bioactive material (Bioglass (R) 45S5), unfilled defects and intact controls. A three-point bending test was performed 20 days after the surgical procedure, as well as the histomorphometric analysis in two regions of interest: cortical bone and medullary canal where the particulate biomaterial was implanted. The biomechanical test revealed a significant increase in the maximum load at failure and stiffness in the Biosilicate group (R) (vs. control defects), whose values were similar to uninjured bones. There were no differences in the cortical bone parameters in groups with bone defects, but a great deal of woven bone was present surrounding Biosilicate (R) and Bioglass (R) 45S5 particulate. Although both bioactive materials supported significant higher bone formation; Biosilicate (R) was superior to Bioglass (R) 45S5 in some histomorphometric parameters (bone volume and number of osteoblasts). Regarding bone resorption, Biosilicate (R) group showed significant higher number of osteoclasts per unit of tissue area than defect and intact controls, despite of the non-significant difference in the osteoclastic surface as percentage of bone surface. This study reveals that the fully crystallized Biosilicate (R) has good bone-forming and bone-bonding properties. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 978: 139-147, 2011.
Resumo:
In this paper, experiments to detect turbulent spots in the transitional boundary layers, formed on a flat plate in a free-piston shock tunnel how, are reported. Experiments indicate that thin-film heat-transfer gauges are suitable for identifying turbulent-spot activity and can be used to identify parameters such as the convection rate of spots and the intermittency of turbulence.
Resumo:
Herpesviruses, such as murine and human cytomegalovirus (MCMV and HCMV), can establish a persistent infection within the host and have diverse mechanisms as protection from host immune defences'. Several herpesvirus genes that are homologous to host immune modulators have been identified, and are implicated in viral evasion of the host immune response(2,3). The discovery of a viral major histocompatibility complex (MHC) class I homologue, encoded by HCMV(4), led to speculation that it might function as an immune modulator and disrupt presentation of peptides by MHC class I to cytotoxic T cells(5). However, there is no evidence concerning the biological significance of this gene during viral infection. Recent analysis of the MCMV genome has also demonstrated the presence of a MHC class I homologue(6). Here we show that a recombinant MCMV,in which. the gene encoding the class I homologue has been disrupted, has severely restricted replication during the acute stage of infection compared with wild-type MCMV, We demonstrate by in vivo depletion studies that natural killer (NK) cells are responsible for the attenuated phenotype of the mutant. Thus the viral MHC dass I homologue contributes to immune evasion through interference with NK cell-mediated clearance.
Resumo:
7-ketocholesterol (7-KC) differs from cholesterol by a functional ketone group at C7. It is an oxygenated cholesterol derivative (oxysterol), commonly present in oxidized low-density lipoprotein (LDL). Oxysterols are generated and participate in several physiologic and pathophysiologic processes. For instance, the cytotoxic effects of oxidized LDL have been widely attributed to bioactive compounds like oxysterols. The toxicity is in part due to 7-KC. Here we aimed to demonstrate the possibility of incorporating 7-KC into the synthetic nanoemulsion LDE, which resembles LDL in composition and behavior. This would provide a suitable artificial particle resembling LDL to study 7-KC metabolism. We were able to incorporate 7-KC in several amounts into LDE. The incorporation was evaluated and confirmed by several methods, including gel filtration chromatography, using radiolabeled lipids. The incorporation did not change the main lipid composition characteristics of the new nanoparticle. Particle sizes were also evaluated and did not differ from LDE. In vivo studies were performed by injecting the nanoemulsion into mice. The plasma kinetics and the targeted organs were the same as described for LDE. Therefore, 7-KC-LDE maintains composition, size and some functional characteristics of LDE and could be used in experiments dealing with 7-ketocholesterol metabolism in lipoproteins.
Resumo:
Nuclear fluorescence in keratinocytes is an occasional phenomenon, often present in autoimmune diseases, especially in connective-tissue disease (CTD); however, its clinical significance remains unclear. To investigate the profile of patients with positive nuclear staining on direct immunofluorescence (DIF) of skin samples. A retrospective analysis of 28 patient records from our immunodermatology laboratory was performed between May 2003 and June 2006. Inclusion criteria were the presence of autoantibodies (IgG, IgA or IgM) or complement (C3) binding keratinocyte nuclei on DIF. The most prevalent diseases related to the nuclear keratinocyte DIF staining were systemic lupus erythematosus (n = 9), mixed CTD (n = 3), overlap syndrome (n = 3), Sjogren`s syndrome (n = 1), and CREST (calcinosis, Raynaud`s phenomenon, oesophageal dysmotility, sclerodactyly and telangiectasia) syndrome (n = 1). Serum antinuclear antibody (ANA) was positive in 20 of 28 patients, with titres varying from 1 : 160 to 1 : 1280. Of the 20 patients with positive anti-nuclear antibodies (ANA), 17 were positive for anti-extractable nuclear antigen antibodies, 12 had anti-SSA/Ro, 11 had anti-SSB/La and 8 had anti-ribonucleoprotein. Eight patients were negative for ANA. Positive predictive value of in vivo ANA for systemic CTDs was 75%. The present data suggest that in vivo ANA evaluation is an additional and feasible auxiliary tool for diagnosing CTDs.
Resumo:
We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.
Resumo:
Background: Progesterone, estrogen and the hormonal complex of pregnancy have been responsible for some degree of colon hypomotility in human pregnancy. Objective: To find out if estrogen, progesterone and the hormonal complex of pregnancy decrease colon myoelectric activity. Methods: The study was performed in 37 healthy female rats in which electrodes were implanted on the serosa of the proximal ascendent, distal ascendent, transverse, and descendent colon. We analyzed the records of colon myoelectric activity in vivo in five groups: control, ovariectomized, ovariectomized and treated with estrogen, ovariectomized and treated with progesterone, and pregnant rats. Results: We found a great variation in myoelectric activity in all groups studied. The mean of electric activity did not show statistical difference among the five groups, but pregnant rats had a statistically significant higher duration of maximum electric activity in all distances from the cecocolon junction. Conclusion: Pregnant rats had a statistically higher duration of maximum electric activity. If we could transpose these results to humans, this increase in duration of colon myoelectric activity could explain, in part, the slight constipation that some pregnant women have. Copyright (C) 2008 S. Karger AG, Basel.