133 resultados para Kumanoa amazonensis
Resumo:
In this study, Cu(II) complexes with fluorinated ligands were produced aiming at the development of new, less toxic antileishmanial metallodrugs. Complexes of the general formula CuL(2) (L = lactate, trifluorolactate, 2-hydroxyisobutyrate, trifluoro-2-hydroxyisobutyrate) were synthesized in methanolic medium, purified by crystallization and characterized by elemental analysis and electronic and infrared spectroscopies. In vitro experiments with Leishmania amazonensis promastigotes showed that the trifluorolactate derivative more active than its non-fluorinated counterpart. Our results indicate that fluorinated chelators may be interesting to increase metal toxicity and/or open new paths for metallodrug chemotherapy against leishmaniasis.
Resumo:
Limonene is a monoterpene that has antitumoral, antibiotic and antiprotozoal activity. In this study we demonstrate the activity of limonene against Leishmania species in vitro and in vivo. Limonene killed Leishmania amazonensis promastigotes and amastigotes with 50% inhibitory concentrations of 252.0 +/- 49.0 and 147.0 +/- 46.0 mu M, respectively. Limonene was also effective against Leishmania major, Leishmania braziliensis and Leishmania chagasi promastigotes. The treatment of L. amazonensis-infected macrophages with 300 mu M limonene resulted in 78% reduction in infection rates. L. amazonensis-infected mice treated topically or intrarectally with limonene had significant reduction of lesion sizes. A significant decrease in the parasite load was shown in the lesions treated topically with limonene by histopathological examination. The intrarectal treatment was highly effective in decreasing the parasite burden, healing established lesions and suppressing the dissemination of ulcers. Limonene presents low toxicity in humans and has been shown to be effective as an agent for enhancing the percutaneous permeation of drugs. Our results suggest that limonene should be tested in different experimental models of infection by Leishmania. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) has long been known to protect experimental animals from the injury associated with oxidative and inflammatory conditions. In the latter case, a parallel decrease in tissue protein nitration levels has been observed. Protein nitration represents a shift in nitric oxide actions from physiological to pathophysiological and potentially damaging pathways involving its derived oxidants such as nitrogen dioxide and peroxynitrite. In infectious diseases, protein tyrosine nitration of tissues and cells has been taken as evidence for the involvement of nitric oxide-derived oxidants in microbicidal mechanisms. To examine whether tempol inhibits the microbicidal action of macrophages, we investigated its effects on Leishmania amazonensis infection in vitro (RAW 264.7 murine macrophages) and in vivo (C57B1/6 mice). Tempol was administered in the drinking water at 2 mM throughout the experiments and shown to reach infected footpads as the nitroxide plus the hydroxylamine derivative by EPR analysis. At the time of maximum infection (6 weeks), tempol increased footpad lesion size (120%) and parasite burden (150%). In lesion extracts, tempol decreased overall nitric oxide products and expression of inducible nitric oxide synthase to about 80% of the levels in control animals. Nitric oxide-derived products produced by radical mechanisms, such as 3-nitrotyrosine and nitrosothiol, decreased to about 40% of the levels in control mice. The results indicate that tempol worsened L. amazonensis infection by a dual mechanism involving down-regulation of iNOS expression and scavenging of nitric oxide-derived oxidants. Thus, the development of therapeutic strategies based on nitroxides should take into account the potential risk of altering host resistance to parasite infection. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Julocrotine, N-(2,6-dioxo-l-phenethyl-piperidin-3-yl)-2-methyl-butyramide, is a potent antiproliferative agent against the promastigote and amastigote forms of Leishmania amazonensis (L.). In this work, the crystal structure of Julocrotine was solved by X-ray diffraction, and its geometrical parameters were compared with theoretical calculations at the B3LYP and HF level of theory. IR and NMR spectra also have been obtained and compared with theoretical calculations. IR absorptions calculated with the B3LYP level of theory employed together with the 6-311G+(d,p) basis set, are close to those observed experimentally. Theoretical NMR calculations show little deviation from experimental results. The results show that the theory is in accordance with the experimental data. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Species of Baccharis exhibit antibiotic, antiseptic, wound-healing, and anti-protozoal properties, and have been used in the traditional medicine of South America for the treatment of several diseases. In the present work, the fractionation of EtOH extract from aerial parts of Baccharis uncinella indicated that the isolated compounds caffeic acid and pectolinaringenin showed inhibitory activity against Leishmania (L.) amazonensis and Leishmania (V.) braziliensis promastigotes, respectively. Moreover, amastigote forms of both species were highly sensible to the fraction composed by oleanolic + ursolic acids and pectolinaringenin. Caffeic acid also inhibited amastigote forms of L. (L.) amazonensis, but this effect was weak in L. (V.) braziliensis amastigotes. The treatment of infected macrophages with these compounds did not alter the levels of nitrates, indicating a direct effect of the compounds on amastigote stages. The results presented herein suggest that the active components from B. uncinella can be important to the design of new drugs against American tegumentar leishmaniases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Bacteria trom Shewanella and Geobacter ganera are the most studied iron-reducing microorganisms particularly due to their electron transport systems and contribution to some industrial and environmental problems, including steel corrosion, bioenergy and bioremediation of petroleum-impacted sites. The present study was focused in two ways: the first is an in silico comparative ecogenomic study of Shewanella spp. with sequenced genomes, and the second is an experimental metagenomic work to detect iron-reducing Shewanella through PCR-DGGE of a metabolic gene. The in silico study resulted in positive correIation between copy number of 16S rDNA and genome size in Shewanella spp., with clusters of rrn near lhe origin of replication. This way, the genus is inferred as opportunist. There are no compact genomes and their sequences length varied, ranging from 4306142 nt in S. amazonensis SB2B to 5935403 nt in S. woodyi ATCC 51908, without correIation to temperature range characteristic of each specie. Intragenomic 16S rDNA sequences possess little divergence, but reasonable to resuIt in different phyIogenetic trees, depending on the sequence that is chosen to compare. For moIecuIar detection of iron-reducing Shewanella, it is proposed the mtrB gene as new biomarker. because it codes to a fundamental protein at Fe (III)-reduction. The specific primers were designed and evaluated in silico and resulted in a fragment of 360 pb. In the second study, these primers were tested in a genomic sample from S. oneidensis MR-1, amplifying the expected region. After this successfuI resuIt, the primer set was used as a tool to assess the iron-reducing communities of ShewaneIla genus under an environmental stress, i.e. crude oil contamination in mangrove sediment in Rio Grande do Norte State (Brazil). The primers presented high specificity and the reactions performed resulted in one single band of ampIification in the metagenomic samples. The fingerprinting obtained at DGGE reveaIed temporal variation of Shewanella spp. in analyzed samples. The resuIts presented show the detection of a biotechnological important group of microorganisms, the iron-reducing Shewanella spp. using a metabolic gane as target. It is concluded there are eight or more 16S rDNA sequences in Shewanella genus, with little divergence among them that affects the phylogeny; the pair of primers designed to ampIify mtrB sequences is a viable alternative to detect iron-reducing ShewanelIa in metagenomic approaches; such bacteria are present in the mangrove sediment anaIyzed, with temporal variations in the samples. This is the first experimental study that screened the iron-reducing Shewanella genus in a metagenomic experiment of mangrove sediments subjected to oil contamination through a key metabolic gene
Resumo:
We report the identification of two distinct homologues of the 70-kDa mitochondrial heat shock protein (mtHSP70) from Leishmania chagasi/Leishmania infantum (Lc2.1 and Lc2.2). in Leishmania species, multiple genes encoding Lc2.2 are present whilst single genes encode Lc2.1. Strikingly, genes encoding Lc2.1-like proteins are absent from Trypanosoma species. Lc2.2 is characterized by a poly-glutamine rich C-terminus, absent from Lc2.1 or mtHSP70 homologues outside the trypanosomatids. Lc2.1 displays unique substitutions within its peptide-binding domain which modify amino acids strictly conserved in cytoplasmic and mitochondrial HSP70 proteins alike. Affinity purified antibodies recognize mainly a single protein in extracts from promastigotes/epimastigotes of various Leishmania/Trypanosoma species. Upon differentiation of Leishmania amazonensis into amastigotes a second protein (presumably Lc2.1) is induced and becomes the predominant mtHSP70 homologue expressed. Subcellular localization of these proteins was investigated and ratified a distribution throughout the mitochondrial matrix. Our results imply novel mtHSP70 functions which evolved within the genus Leishmania. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Species of Rhodophyta from 10 Conservation Units from the south region of Brazil were surveyed. The samplings were carried out in 105 stream reaches, consisting of 10 m length transects. The floristic survey involved 80 populations, representing three genera, Batrachospermum, Kumanoa and Hildenbrandia plus the 'Chantransia' stages. Batrachospermum was represented by five species (B. arcuatum Kylin, B. atrum (Hudson) Harvey, B. helminthosum Bory, B. keratophytum Bory and B. puiggarianum Grunow in Wittrock & Nordstedt). The genus Kumanoa was represented by K. abilii (Reis) Necchi Junior & Vis and K. ambigua (Montagne) Entwisle et al., while Hildenbrandia only by H. angolensis W.West & G.S.West. Our results confirm Batachospermum as the best represented genus, in terms of species number, among freshwater Rhdophyta. B. arcuatum was a new record for the south region of Brazil, thus extending its austral distribution range.
Resumo:
In this study, we compared the anti-leishmanial activity of three crotalic venoms (Crotalus durissus terrificus-Cdt, Crotalus durissus cascavella-Cdca, and Crotalus durissus collilineatus-Cdcol). Different concentrations of each venom incubated with Leishmania (Leishmania) amazonensis promastigotes were used. Cdt venom exhibited a higher anti-leishmanial activity (Inhibitory concentration-IC50-value of 4.70 +/- 1.72 mu g/ml) in comparison with that of Cdca venom (IC50 value of 9.41 +/- 1.21 mu g/ml), while Cdcol venom increased parasite numbers in 50% at a concentration of 44.30 +/- 2.18 mu g/ml. In addition, this venom showed a low anti-leishmanial activity in higher concentrations (IC50 value of 281.00 +/- 9.50 mu g/ml). The main fractions of Cdca venom were isolated and assayed under similar conditions used for assessing crude venom. The most active fractions were gyroxin and crotamine that had IC50 values of 3.80 +/- 0.52 mu g/ml and 19.95 +/- 4.21 mu g/ml, respectively. Convulxin also inhibited parasite growth rate, although this effect was not dose-dependent. Crotoxin was the least effective fraction with an IC50 value of 99.80 +/- 2.21 mu g/ml. None of the protein fractions presented cytotoxic effects against J774 cells in culture. In vivo assays using BALB/c mice revealed that crotoxin and crotamine were the main toxic fractions. In conclusion, C. durissus cascavella venom has three main fractions with anti-leishmanial activity. These results open new possibilities to find proteins that might be used as possible agents against cutaneous leishmaniasis.
Resumo:
A novel L-amino acid oxidase (LAO) (Casca LAO) from Crotalus durissus cascavella venom was purified to a high degree of molecular homogeneity using a combination of molecular exclusion and ion-exchange chromatography system. The purified monomer of LAO presented a molecular mass of 68 kDa and pI estimated in 5.43, which were determined by two-dimensional electrophoresis. The 71st N-terminal amino acid sequence of the LAO from Crotalus durissus cascavella presented a high amino acid sequence similarities with other LAOs from Colloselasma rhosostoma, Crotalus adamanteus, Agkistrodon h. blomhoffi, Agkistrodon h. halys and Trimeresurus stejnegeri. LAO displayed a Michaelis-Menten behavior with a kilometer of 46.7 mu M and an optimum pH for enzymatic activity of 6.5. Casca LAO induced a dose-dependent platelet aggregation, which was abolished by catalase and inhibited by indomethacin and aspirin. These results suggest that the production of H2O2 is involved in subsequent activation of inflammatory enzymes, such as thromboxane. Casca LAO also inhibited the bacterial Growth of Gram-negative (Xanthomonas axonopodis pv passiflorae) and Gram-positive (S. mutans) strains. Electron microscopy assessments of both bacterial strains suggest that the hydrogen peroxide produced by LAO induce bacterial membrane rupture and consequently loss of cytoplasmatic content. This LAO exhibited a high antileishmanic activity against the promastigote of Leishmania amazonensis in vitro, its activity was dependent on the production of hydrogen peroxide, and the 50% inhibitory concentration was estimated in 2.39 mu g/ml. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)