71 resultados para Korteweg
Resumo:
We examine the appearance of surface waves governed by Burgers and Korteweg-de Vries equations in a shallow viscous heated fluid. We consider waves triggered by a surface-tension variation induced by both temperature and concentration gradients. We also establish the range of parameters for which the above-mentioned equations appear.
Resumo:
By considering the long-wavelength limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple-scale method in obtaining uniform perturbative series.
Resumo:
In this paper, we consider the propagation of water waves in a long-wave asymptotic regime, when the bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full potential theory model and of a family of reduced Boussinesq systems parametrized by a free parameter that is the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting effective Korteweg-de Vries (KdV) equations. We show that it is possible to choose the free parameter of the reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the effective wave propagation. In particular, nonlinearity is enhanced and we can distinguish two regimes depending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom case. © 2007 The American Physical Society.
Resumo:
The evolution of surface water waves in finite depth under wind forcing is reduced to an antidissipative Korteweg-de Vries-Burgers equation. We exhibit its solitary wave solution. Antidissipation accelerates and increases the amplitude of the solitary wave and leads to blow-up and breaking. Blow-up occurs in finite time for infinitely large asymptotic space so it is a nonlinear, dispersive, and antidissipative equivalent of the linear instability which occurs for infinite time. Due to antidissipation two given arbitrary and adjacent planes of constant phases of the solitary wave acquire different velocities and accelerations inducing breaking. Soliton breaking occurs in finite space in a time prior to the blow-up. We show that the theoretical growth in amplitude and the time of breaking are both testable in an existing experimental facility.
Resumo:
A dynamical model is proposed to describe the coupled decomposition and profile evolution of a free surfacefilm of a binary mixture. An example is a thin film of a polymer blend on a solid substrate undergoing simultaneous phase separation and dewetting. The model is based on model-H describing the coupled transport of the mass of one component (convective Cahn-Hilliard equation) and momentum (Navier-Stokes-Korteweg equations) supplemented by appropriate boundary conditions at the solid substrate and the free surface. General transport equations are derived using phenomenological nonequilibrium thermodynamics for a general nonisothermal setting taking into account Soret and Dufour effects and interfacial viscosity for the internal diffuse interface between the two components. Focusing on an isothermal setting the resulting model is compared to literature results and its base states corresponding to homogeneous or vertically stratified flat layers are analyzed.
Resumo:
El propósito de esta tesis doctoral es el estudio de la conexión, mediante el problema de Riemann-Hilbert, entre sistemas discretos y la teoría de polinomios matriciales ortogonales. La investigación de los modelos integrables se originó en la Mecánica Clásica, en relación a la resolución de las ecuaciones de Newton [2]. Los trabajos de Liouville, Hamilton, Jacobi y otros sentaron las bases de los sistemas integrables como prototipos modelos resolubles por cuadraturas, v.g., por integración directa [7]. Hay una cantidad importante de investigación dedicada a los aspectos geométricos de los sistemas clásicos integrables y superintegrables [66], [82], especialmente en relación a la separación de variables de la ecuación de Hamilton-Jacobi [75]. Fue la aplicación, en la segunda mitad del siglo pasado, de la transformada espectral inversa para la resolución del problema de Cauchy de la ecuación de Korteweg-de Vries [42, 43] la que marcó el inicio de una nueva etapa en este campo, el del estudio de sistemas integrables con un número infinito de grados de libertad, que generalmente se expresan en términos de jerarquías de ecuaciones no lineales en derivadas parciales. Particularmente reseñable, por su aplicación en la hidrodinámica y en la óptica cuántica, es la aparición de las soluciones a un número de solitones arbitrario. En las últimas tres décadas ha habido un importante interés por el estudio de modelos discretos, v.g., sistemas dinámicos de nidos en un retículo de puntos, y expresados en términos de ecuaciones no lineales en diferencia parciales. Muchas de las técnicas encontradas en el mundo continuo se extendieron a este nuevo contexto discreto. Hay dos razones fundamentales para este interés...
Resumo:
We present a new, accurate measurement of the H I mass function of galaxies from the HIPASS Bright Galaxy Catalog, a sample of 1000 galaxies with the highest H I peak flux densities in the southern (delta
Resumo:
We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H I brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey ( HIPASS). The selection of the brightest sources is based on their H I peak flux density (S-peak greater than or similar to116 mJy) as measured from the spatially integrated HIPASS spectrum. The derived H I masses range from similar to10(7) to 4 x 10(10) M-.. While the BGC ( z< 0.03) is complete in S-peak, only a subset of &SIM;500 sources can be considered complete in integrated H I flux density (F-H I &GSIM;25 Jy km s(-1)). The HIPASS BGC contains a total of 158 new redshifts. These belong to 91 new sources for which no optical or infrared counterparts have previously been cataloged, an additional 51 galaxies for which no redshifts were previously known, and 16 galaxies for which the cataloged optical velocities disagree. Of the 91 newly cataloged BGC sources, only four are definite H I clouds: while three are likely Magellanic debris with velocities around 400 km s(-1), one is a tidal cloud associated with the NGC 2442 galaxy group. The remaining 87 new BGC sources, the majority of which lie in the zone of avoidance, appear to be galaxies. We identified optical counterparts to all but one of the 30 new galaxies at Galactic latitudes > 10degrees. Therefore, the BGC yields no evidence for a population of free-floating'' intergalactic H I clouds without associated optical counterparts. HIPASS provides a clear view of the local large-scale structure. The dominant features in the sky distribution of the BGC are the Supergalactic Plane and the Local Void. In addition, one can clearly see the Centaurus Wall, which connects via the Hydra and Antlia Clusters to the Puppis Filament. Some previously hardly noticable galaxy groups stand out quite distinctly in the H I sky distribution. Several new structures, including some not behind the Milky Way, are seen for the first time.
Resumo:
El cambio climático es uno de los mayores desafíos de la actualidad. La UE ha abordado el tema de forma claramente insuficiente desde el punto de vista teórico, con unos planteamientos demasiado inmovilistas y hasta conformistas con su propia acción. Pero, al mismo tiempo, ha sido uno de los primeros y principales actores internacionales en actuar y posicionarse claramente en la lucha contra el cambio climático. La Estrategia Global de Seguridad de la UE no aborda adecuadamente ni el cambio climático como prioridad fundamental ni algunas de sus implicaciones en las políticas de los Estados Miembros de la UE.
Resumo:
Esta tesis de grado se intereza por observar y análizar las red migratoria de los Kichwas de Sesquilé, especificamente en los procesos que permitieron la construcción y consolidación de las redes migratorias, las cuales se encienden o se apagan, a partir de las configuraciones políticas, religiosas, culturales y económicas que la comunidad ha experimentado.