996 resultados para Kb Cells
Resumo:
We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.
Resumo:
Expression of the Na$\sp+$/glucose cotransporter (SGLT1), a differentiated function of the pig kidney epithelial cell line LLC-PK$\sb1$ derived from proximal tubule, was further investigated. The differentiation inducer hexamethylene bisacetamide (HMBA) and IBMX, an inhibitor of cAMP phosphodiesterase, each stimulated a significant increase in Na$\sp+$/glucose cotransport activity, levels of the 75 kD cotransporter subunit and steady-state levels of the SGLT1 message. The action of HMBA is associated with involvement of polyamines and protein kinase C, and is synergistic with cAMP. We provide evidence that cAMP-elevating agents increase Na$\sp+$/glucose cotransporter expression, at least in part, via a post-transcriptional mechanism. Two molecular species of SGLT1 mRNA (3.9 kb and 2.2 kb) are transcribed from the same gene in LLC-PK$\sb1$ cells and differ only in the length of the 3$\sp\prime$ untranslated region (3$\sp\prime$ UTR). cAMP elevation differentially stabilized the 3.9 kb SGLT1 transcript from degradation but not the 22 kb species. UV-cross-linking and label transfer experiments indicated that cyclic AMP elevation was associated with formation of a 48 kD protein complex with a specific domain within the 3$\sp\prime$ UTR of SGLT1 mRNA. The binding was competitively inhibited by poly (U) and other U-rich RNA species such as c-fos ARE, and modulated by a protein kinase A-mediated phosphorylation/dephosphorylation mechanism. The binding site was mapped to a 120-nucleotide 3$\sp\prime$ UTR sequence which contains a uridine-rich region (URE). Our study provides the first demonstration that renal SGLT1 is post-transcriptionally regulated by a phosphorylation/dephosphorylation mechanism, and provides a deeper insight into gene regulation of this physiologically important cotransporter. ^
Resumo:
Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^
Resumo:
La pseudoangiomatosis eruptiva se caracteriza por la aparición brusca de múltiples pápulas eritematosas, asintomáticas, rodeadas de un halo blanquecino, con remisión espontánea. Histológicamente se observa dilatación vascular con escaso infiltrado inflamatorio. Su etiología permanece incierta a pesar de ser relacionada con virus o picaduras de insectos. Basados en el compromiso vascular, el objetivo del trabajo fue investigar la actividad de la enzima endotelial oxido nítrico sintetasa (eNOS) y la expresión del factor NF-kB por inmunohistoquimica en un intento de esclarecer su patogenia. Material y métodos: Se estudiaron diez pacientes con diagnóstico clínico de pseudoangiomatosis eruptiva (PAE) que presentaron la dermatosis en forma epidémica. Se realizaron biopsias teñidas con Hematoxilina-Eosina y Tricrómico de Masson. Se efectuó estudio virológico de los pacientes Nª 4, 9 y 10 mediante determinaciones serológicas para echovirus, enterovirus, citomegalovirus, parvovirus B19 y hepatitis A, B y C. En cinco pacientes se obtuvo material para determinación de eNOS y NF-kB. Resultados: Todos los pacientes, 5 hombres y 5 mujeres presentaron pápulas eritematosas rodeadas por un halo blanquecino, especialmente en las extremidades, alrededor de las rodillas. Histológicamente mostraron vasos dilatados y células endoteliales prominentes con un infiltrado discreto perivascular. Todos los estudios serológicos fueron negativos. La actividad de eNOS fue significativamente menor comparada con la piel normal (p= 0,002) y la expresión de NF- ĸB fue fuertemente positiva en los vasos de la dermis papilar y reticular. Conclusiones: Todos los pacientes fueron afectados en verano, por lo que la picadura del mosquito debe ser considerada como un factor etiológico. La baja expresión de eNOS está relacionada con la vasodilatación y la expresión aumentada de NF-ĸB confirma que el proceso es de tipo inflamatorio.
Resumo:
Dosage compensation in mammals occurs by X inactivation, a silencing mechanism regulated in cis by the X inactivation center (Xic). In response to developmental cues, the Xic orchestrates events of X inactivation, including chromosome counting and choice, initiation, spread, and establishment of silencing. It remains unclear what elements make up the Xic. We previously showed that the Xic is contained within a 450-kb sequence that includes Xist, an RNA-encoding gene required for X inactivation. To characterize the Xic further, we performed deletional analysis across the 450-kb region by yeast-artificial-chromosome fragmentation and phage P1 cloning. We tested Xic deletions for cis inactivation potential by using a transgene (Tg)-based approach and found that an 80-kb subregion also enacted somatic X inactivation on autosomes. Xist RNA coated the autosome but skipped the Xic Tg, raising the possibility that X chromosome domains escape inactivation by excluding Xist RNA binding. The autosomes became late-replicating and hypoacetylated on histone H4. A deletion of the Xist 5′ sequence resulted in the loss of somatic X inactivation without abolishing Xist expression in undifferentiated cells. Thus, Xist expression in undifferentiated cells can be separated genetically from somatic silencing. Analysis of multiple Xic constructs and insertion sites indicated that long-range Xic effects can be generalized to different autosomes, thereby supporting the feasibility of a Tg-based approach for studying X inactivation.
Resumo:
A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.
Resumo:
To study RAG2 gene regulation in vivo, we developed a blastocyst complementation method in which RAG2-deficient embryonic stem cells were transfected with genomic clones containing RAG2 and then assessed for their ability to generate lymphocytes. A RAG2 genomic clone that contained only the RAG2 promoter sequences rescued V(D)J recombination in RAG2-deficient pro-B cell lines, but did not rescue development of RAG2-deficient lymphocytes in vivo. However, inclusion of varying lengths of sequences 5′ of the RAG2 promoter generated constructs capable of rescuing only in vivo B cell development, as well as other constructs that rescued both B and T cell development. In particular, the 2-kb 5′ region starting just upstream of the RAG2 promoter, as well as the region from 2–7 kb 5′, could independently drive B cell development, but not efficient T cell development. Deletion of the 2-kb 5′ region from the murine germ line demonstrated that this region was not required for RAG expression sufficient to generate normal B or T cell numbers, implying redundancy among 5′ elements. We conclude that RAG2 expression in vivo requires elements beyond the core promoter, that such elements contribute to differential regulation in the B vs. T lineages, and that sequences sufficient to direct B cell expression are located in the promoter-proximal 5′ region.
Resumo:
The Chinese hamster ovary (CHO) mutant UV40 cell line is hypersensitive to UV and ionizing radiation, simple alkylating agents, and DNA cross-linking agents. The mutant cells also have a high level of spontaneous chromosomal aberrations and 3-fold elevated sister chromatid exchange. We cloned and sequenced a human cDNA, designated XRCC9, that partially corrected the hypersensitivity of UV40 to mitomycin C, cisplatin, ethyl methanesulfonate, UV, and γ-radiation. The spontaneous chromosomal aberrations in XRCC9 cDNA transformants were almost fully corrected whereas sister chromatid exchanges were unchanged. The XRCC9 genomic sequence was cloned and mapped to chromosome 9p13. The translated XRCC9 sequence of 622 amino acids has no similarity with known proteins. The 2.5-kb XRCC9 mRNA seen in the parental cells was undetectable in UV40 cells. The mRNA levels in testis were up to 10-fold higher compared with other human tissues and up to 100-fold higher compared with other baboon tissues. XRCC9 is a candidate tumor suppressor gene that might operate in a postreplication repair or a cell cycle checkpoint function.
Resumo:
Expression of the γ-aminobutyric acid type A receptor α6 subunit gene is restricted to differentiated granule cells of the cerebellum and cochlear nucleus. The mechanisms underlying this limited expression are unknown. Here we have characterized the expression of a series of α6-based transgenes in adult mouse brain. A DNA fragment containing a 1-kb portion upstream of the start site(s), together with exons 1–8, can direct high-level cerebellar granule cell-specific reporter gene expression. Thus powerful granule cell-specific determinants reside within the 5′ half of the α6 subunit gene body. This intron-containing transgene appears to lack the cochlear nucleus regulatory elements. It therefore provides a cassette to deliver gene products solely to adult cerebellar granule cells.
Resumo:
Müllerian inhibiting substance (MIS) causes regression of the fetal Müllerian duct on binding a heteromeric complex of types I and II cell-surface receptors in the fetal urogenital ridge. The MIS type II receptor (MISRII), which provides specificity for MIS, is also expressed in the adult testis, ovary, and uterus. The rat MISRII promoter was cloned to study the molecular mechanisms underlying its temporal and cell-specific expression. The 1.6-kilobase (kb) promoter contained no recognizable TATA or CAAT box, but there was a consensus Sp1 site upstream of the transcription initiation site. Two binding sites for the orphan nuclear receptor steroidogenic factor-1 (SF-1) are occupied in vitro by using nuclear extracts from R2C cells, an MIS-responsive rat Leydig cell line that expresses endogenous MISRII, with differing affinities, indicating that the distal SF-1 site is bound more avidly than is the proximal SF-1 site. R2C cells transfected with MISRII promoter/luciferase reporter constructs show a 12-fold induction with the 1.6-kb fragment and deletion of sequences upstream of −282-bp lowered luciferase expression to one-third. Mutation of both SF-1 sites greatly inhibited luciferase expression, whereas mutation of either site alone resulted in continuing activation by endogenous SF-1, indicating redundancy. In vitro binding and transcriptional analyses suggest that a proximal potential Smad-responsive element and an uncharacterized element also contribute to activation of the MISRII gene. R2C cells and MISRII promoter regulation can now be used to uncover endogenous transcription factors responsible for receptor expression or repression.
Resumo:
Sickle cell anemia (SCA) and thalassemia are among the most common genetic diseases worldwide. Current approaches to the development of murine models of SCA involve the elimination of functional murine α- and β-globin genes and substitution with human α and βs transgenes. Recently, two groups have produced mice that exclusively express human HbS. The transgenic lines used in these studies were produced by coinjection of human α-, γ-, and β-globin constructs. Thus, all of the transgenes are integrated at a single chromosomal site. Studies in transgenic mice have demonstrated that the normal gene order and spatial organization of the members of the human β-globin gene family are required for appropriate developmental and stage-restricted expression of the genes. As the cis-acting sequences that participate in activation and silencing of the γ- and β-globin genes are not fully defined, murine models that preserve the normal structure of the locus are likely to have significant advantages for validating future therapies for SCA. To produce a model of SCA that recapitulates not only the phenotype, but also the genotype of patients with SCA, we have generated mice that exclusively express HbS after transfer of a 240-kb βs yeast artificial chromosome. These mice have hemolytic anemia, 10% irreversibly sickled cells in their peripheral blood, reticulocytosis, and other phenotypic features of SCA.
Resumo:
In an effort to identify nuclear receptors important in retinal disease, we screened a retina cDNA library for nuclear receptors. Here we describe the identification of a retina-specific nuclear receptor (RNR) from both human and mouse. Human RNR is a splice variant of the recently published photoreceptor cell-specific nuclear receptor [Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K. & Umesono, K. (1999) Proc. Natl. Acad. Sci. USA 96, 4814–4819] whereas the mouse RNR is a mouse ortholog. Northern blot and reverse transcription–PCR analyses of human mRNA samples demonstrate that RNR is expressed exclusively in the retina, with transcripts of ≈7.5 kb, ≈3.0 kb, and ≈2.3 kb by Northern blot analysis. In situ hybridization with multiple probes on both primate and mouse eye sections demonstrates that RNR is expressed in the retinal pigment epithelium and in Müller glial cells. By using the Gal4 chimeric receptor/reporter cotransfection system, the ligand binding domain of RNR was found to repress transcriptional activity in the absence of exogenous ligand. Gel mobility shift assays revealed that RNR can interact with the promoter of the cellular retinaldehyde binding protein gene in the presence of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR). These data raise the possibility that RNR acts to regulate the visual cycle through its interaction with cellular retinaldehyde binding protein and therefore may be a target for retinal diseases such as retinitis pigmentosa and age-related macular degeneration.
Resumo:
HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells.
Resumo:
Hemizygous interstitial deletions in human chromosome 22q11 are associated with velocardiofacial syndrome and DiGeorge syndrome and lead to multiple congenital abnormalities, including cardiovascular defects. The gene(s) responsible for these disorders is thought to reside in a 1.5-Mb region of 22q11 in which 27 genes have been identified. We have used Cre-mediated recombination of LoxP sites in embryonic stem cells and mice to generate a 550-kb deletion encompassing 16 of these genes in the corresponding region on mouse chromosome 16. Mice heterozygous for this deletion are normal and do not exhibit cardiovascular abnormalities. Because mice with a larger deletion on mouse chromosome 16 do have heart defects, the results allow us to exclude these 16 genes as being solely, or in combination among themselves, responsible for the cardiovascular abnormalities in velocardiofacial/DiGeorge syndrome. We also generated mice with a duplication of the 16 genes that may help dissect the genetic basis of “cat eye” and derivative 22 syndromes that are characterized by extra copies of portions of 22q11, including these 16 genes. We also describe a strategy for selecting cell lines with defined chromosomal rearrangements. The method is based on reconstitution of a dominant selection marker after Cre-mediated recombination of LoxP sites. Therefore it should be widely applicable to many cell lines.
Resumo:
MCF-7/AdrVp is a multidrug-resistant human breast cancer subline that displays an ATP-dependent reduction in the intracellular accumulation of anthracycline anticancer drugs in the absence of overexpression of known multidrug resistance transporters such as P glycoprotein or the multidrug resistance protein. RNA fingerprinting led to the identification of a 2.4-kb mRNA that is overexpressed in MCF-7/AdrVp cells relative to parental MCF-7 cells. The mRNA encodes a 663-aa member of the ATP-binding cassette superfamily of transporters that we term breast cancer resistance protein (BCRP). Enforced expression of the full-length BCRP cDNA in MCF-7 breast cancer cells confers resistance to mitoxantrone, doxorubicin, and daunorubicin, reduces daunorubicin accumulation and retention, and causes an ATP-dependent enhancement of the efflux of rhodamine 123 in the cloned transfected cells. BCRP is a xenobiotic transporter that appears to play a major role in the multidrug resistance phenotype of MCF-7/AdrVp human breast cancer cells.