212 resultados para Kastner


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW-NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~ 8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~ 49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and > 80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (> 63 µm) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the active continental margin off Costa Rica substantial amounts of hydrocarbon gases are encountered in sediments. The molecular composition (C1-C3) of free hydrocarbon gas as well as the isotopic composition (d13C of methane and ethane and D of methane) was analysed on core samples (ranging between 50 and 380 m depth) collected at sites 1040-1043 which was drilled during ODP Leg 170. In addition, the molecular composition of the C1-C3 hydrocarbons and the d13C composition of C1 and C2 hydrocarbons was determined on adsorbed gas from selected depth intervals at Site 1041 (50-380 mbsf). The molecular composition, and stable carbon and hydrogen isotope signature of low molecular weight hydrocarbons from core sediments and gas pockets indicate that most of the gas was generated by microbial CO2-reduction. Beside d13C values of about -80 per mil for methane (which is typical for microbially- generated methane) extremely light d13C values of -55 per mil were measured for ethane. The carbon isotope composition of methane and ethane, as well as the C1/(C2+C3) ratio display distinct trends with increasing depth. Gas mixing calculations indicate that the percentage of thermally-generated ethane increases from 10% at about 75 mbsf to almost 80% at 380 mbsf. The fraction of thermogenic methane in this depth interval is calculated to range from 0.03 to 1.8% of the total methane. The small contribution of thermogenic methane would increase the d13C value by <1 per mil. Therefore, the increase of d13C of methane (by about 12 per mil) with depth cannot be explained by gas mixing alone. Instead, the observed d13C trend is caused by successive isotope depletion of the methane precursor within the sedimentary organic matter due to progressing microbial gas generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the South Chamorro Seamount in the Mariana subduction zone, geochemical data of pore fluids recovered from Ocean Drilling Program Leg 195 Site 1200 indicate that these fluids evolved from dehydration of the underthrusting Pacific plate and upwelling of fluids to the surface through serpentinite mud volcanoes as cold springs at their summits. Physical conditions of the fluid source at 27 km were inferred to be at 100°-250°C and 0.8 GPa. The upwelling of fluid is more active near the spring in Holes 1200E and 1200A and becomes less so with increasing distance toward Hole 1200D. These pore fluids are depleted in Cl and Br, enriched in F (except in Hole 1200D) and B (up to 3500 µM), have low 11B (16-21), and have lower than seawater Br/Cl ratios. The mixing ratios between seawater and pore fluids is calculated to be ~2:1 at shallow depth. The F, Cl, and Br concentrations, together with B concentrations and B isotope ratios in the serpentinized igneous rocks and serpentine muds that include ultramafic clasts from Holes 1200A, 1200B, 1200D, 1200E, and 1200F, support the conclusion that the fluids involved in serpentinization originated from great depths; the dehydration of sediments and altered basalt at the top of the subducting Pacific plate released Cl, H2O, and B with enriched 10B. Calculation from B concentrations and upwelling rates indicate that B is efficiently recycled through this nonaccretionary subduction zone, as through others, and may contribute the critical missing B of the oceanic cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two distinct hydrogeochemical regimes currently dominate the Peruvian continental margin. One, in shallower water (150-450 m) shelf to upper-slope regions, is characterized by interstitial waters with strong positive chloride gradients with depth. The maximum measured value of 1043 mM chloride at Site 680 at ITS corresponds to a degree of seawater evaporation of ~2 times. Major ion chemistry and strontioum isotopic composition of the interstitial waters suggest that a subsurface brine that has a marine origin and is of pre-early Miocene "age," profoundly influences the chemistry and diagenesis of this shelf environment. Site 684 at ~9°S must be closest to the source of this brine, which becomes diluted with seawater and/or interstitial water as it flows southward toward Site 686 at ~13?S (and probably beyond) at a rate of approximately 3 to 4 cm/yr, since early Miocene time. The other regime, in deep water (3000-5000 m) middle to lower-slope regions, is characterized by interstitial waters with steep negative and nonsteady-state chloride gradients with depth. The minimum measured value of 454 mM chloride, at Site 683 at ITS, corresponds to ~20% dilution of seawater chloride The most probably sources of these low-chloride fluids are gas hydrate dissociation and mineral (particularly clay) dehydration reactions. Fluid advection is consistent with (1) the extent of dilution shown in the chloride profiles, (2) the striking nonsteady-state depth profiles of chlorides at Sites 683 and 688 and of 87Sr/86Sr ratios at Site 685, and (3) the temperatures resulting from an average geothermal gradient of 50°C/km and required for clay mineral dehydration reactions. Strontium isotope data reveal two separate fluid regimes in this slope region: a more northerly one at Sites 683 and 685 that is influenced by fluids with a radiogenic continental strontium signature, and a southerly one at Sites 682 and 688 that is influenced by fluids with a nonradiogenic oceanic signatures. Stratigraphically controlled fluid migration seems to prevail in this margin. Because of its special tectonic setting, Site 679 at ITS is geochemically distinct. The interstitial waters are characterized by seawater chloride concentrations to -200 mbsf and deeper by a significantly lower chloride concentration of about two-thirds of the value in seawater, suggesting mixing with a meteoric water source. Regardless of the hydrogeochemical regime, the chemistry and isotopic compositions of the interstitial waters at all sites are markedly modified by diagenesis, particularly by calcite and dolomite crystallization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strontium and neodymium isotopic data are reported for barite samples chemically separated from Late Miocene to Pliocene sediments from the eastern equatorial Pacific. At a site within a region of very high productivity close to the equator, 87Sr/86Sr ratios in the barite separates are indistinguishable from those of foraminifera and fish teeth from the same samples. However, at two sites north of the productivity maximum barite separates have slightly, but consistently lower (averaging 0.000062) ratios than the coexisting phases, although values still fall within the total range of published values for the contemporaneous seawater strontium isotope curve. We examine possible causes for this offset including recrystallization of the foraminifera, fish teeth or barite, the presence of non-barite contaminants, or incorporation of older, reworked deep-sea barite; the inclusion of a small amount of hydrothermal barite in the sediments seems most consistent with our data, although there are difficulties associated with adequate production and transportation of this phase. Barite is unlikely to replace calcite as a preferred tracer of seawater strontium isotopes in carbonate-rich sediments, but may prove a useful substitute in cases where calcite is rare or strongly affected by diagenesis. In contrast to the case for strontium, neodymium isotopic ratios in the barite separates are far from expected values for contemporary seawater, and appear to be dominated by an (unobserved) eolian component with high neodymium concentration and low 143Nd/144Nd. These results suggest that the true potential of barite as an indicator of paleocean neodymium isotopic ratios and REE patterns will be realized only when a more selective separation procedure is developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High Li concentrations, up to a maximum of 1155 µM are observed in the pore fluids of the Peru convergent margin slope sediments. At Ocean Drilling Program Sites 683 and 685 (ca. 9°S), the Li concentration depth gradients are twice as steep as at Site 682 and 688 (ca. 11°S). Within the sediments, the most important Li sources are from aluminosilicate minerals. Biogenic opal-A contains little Li and thus dilutes the Li concentration of the bulk sediments. The sediment compositions and the thermal regimes are similar at 9° and 11°S, suggesting there is an additional, non-sedimentary source for the observed high Li concentrations in the northern pore fluids. At 9°S, the 87Sr/86Sr ratios reach a maximum value of 0.709958. The observed radiogenic 87Sr/86Sr values in the pore fluids support the suggestion that the additional Li may derive from exchange reactions with underlying continental crust. The high concentrations of Li at 11°S may derive from basalt alteration at moderate to high temperatures, as suggested by the non-radiogenic 87Sr/86Sr ratios in these pore fluids, which reach a minimum value of 0.707218. Based on (1) Li concentrations in the pore fluids in slope sediments from Peru and several other margins, and (2) an approximate estimate of fluid flux from continental margins into the ocean, continental margins provide an estimated 1 to 3 * 10**10 moles Li/yr to the ocean. This source of oceanic Li, which has not been considered previously, is of the same order of magnitude as some estimates of hydrothermal and river Li fluxes and may have important consequences for the oceanic Li isotope budget. The sink is unknown for this newly discovered and possibly large Li source, but it may be more pervasive low-temperature alteration of oceanic basement than previously estimated, or burial of mineral phases, such as authigenic clay minerals, or metal oxyhydroxides which may be Li-rich.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the Peruvian convergent margin, two distinct pore fluid regimes are recognized from differences in their Cl- concentrations. The slope pore fluids are characterized by low Cl- concentrations, but elevated Br- and I- concentrations due to biogenic production. The shelf pore fluids exhibit elevated Cl- and Br- concentrations due to diffusive mixing with an evaporitic brine. In the slope pore fluids, the Br-, I-, and NH4+ concentrations are elevated following bacterial decomposition of organic matter, but the I- concentrations are in excess of those expected based on mass balance calculations using NH4+ and Br- concentrations. The slope sediment organic matter, which is enriched in iodine from oxidationreduction processes at the oxygenated sediment-water interface, is responsible for this enrichment. The increases in dissolved I- and the I- enrichments relative to NH4+ and Br- correlate well with sedimentation rates because of differential trapping following regeneration. The pore-fluid I-/Br- ratios suggest that membrane ion fiitration is not a major cause of the decreases in Cl- concentrations. Other possible sources for low Cl- water, including meteoric water, clathrate dissociation, and/or mineral dehydration reactions, imply that the diluting component of the slope low-Cl- fluids has flowed at least 1 km through the sediment. The low bottom-water oxygenation in the shelf is responsible for the low (if any) enrichment of iodine in the shelf sediments. Fluctuations in bottom-water oxygen concentrations in the past, however, may be responsible for the observed variations in the sediment I/Br ratios. Comparison of Na+/Cl- and Br-/Cl- molar ratios in the pore fluids shows that the shelf high-Cl- fluid formed from mixing with a brine that formed from seawater concentrated by twelve to nineteen times and probably was modified by halite dissolution. This dense brine, located below the sediment sections drilled, appears to have flowed a distance >500 km through the sediment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineralogical and oxygen isotopic analyses of samples from Deep Sea Drilling Project Sites 477, 481, and 477 in the Guaymas Basin indicate the existence of two distinct hydrothermal systems. In the first, at Sites 481 and 478, hot dolerite sills intruded into highly porous hemipelagic siliceous mudstones that were moderately rich in organic matter, thermally altered the adjacent sediments, and expelled hydrothermal pore fluids. The second, at Site 477 and active at present, is most probably caused by a recent igneous intrusion forming a magma chamber at shallow depth. In the first hydrothermal system, the main thermal reactions above and below the sills are dissolution of opal-A and formation of quartz, either directly or through opal-CT; formation of smectite; formation of analcime only above the sills; dissolution and recrystallization of calcite and occasional formation of dolomite or protodolomite. The d18O values of the hydrothermally altered sediments range from 9.9 to 12.2 per mil (SMOW). The d18O values of recrystallized calcites above the first sill complex, Site 481, indicate temperatures of 140° to 170°C. No fluid recharge is required in this system. The thickness of the sill complexes and the sequence and depth of intrusion into the sediment column determine the thickness of the alteration zones, which ranges from 2 or 3 to approximately 50 meters. Generally, the hydrothermally altered zone is thicker above than below the sill. In the second type, the sediments are extensively recrystallized. The characteristic greenschist-facies mineral assemblage of quartz-albite-chlorite-epidote predominates. Considerable amounts of pyrite, pyrrhotite, and sphene are also present. The lowest d18O value of the greenschist facies rocks is 6.6 per mil, and the highest d18O value of the associated pore fluids is +1.38 per mil (SMOW). The paragenesis and the oxygen isotopes of individual phases indicate alteration temperatures of 300 ± 50°C. On the basis of the oxygen isotopes of the solids and associated fluids, it is concluded that recharge of fluids is required. The water/rock ratio in wt.% is moderate, approximately 2/1 to 3/1 - higher than the calculated water/rock ratio of the hydrothermal system at the East Pacific Rise, 21 °N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strontium, magnesium, oxygen, and carbon isotope profiles of the carbonate fraction of Hole 600C sediments support the lithologic and petrographic observations of extensive CaCO3 dissolution and recrystallization in the Pliocene basal section. Convective fluid flow through the sediments during the first 1 to 1.5 m.y. of the sedimentary history of these sediments may explain these observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geochemistry of the youngest Mediterranean sapropel layer suggests changes in productivity and water column oxygen conditions during sapropel deposition. The Ba-enriched interval is broader than the organic-carbon-rich interval of this sapropel. We suggest that the Ba-enriched horizon records the original thickness of the sapropel prior to subsequent partial oxidation. The main carrier of Ba is barite, as microcrystals (0.5-5 µm ) having a morphology characteristic of marine barite, particularly abundant beneath high productivity regions. Ba concentrations do not change at the sapropel layer oxidation front and diagenetic barite crystals are absent, thus the Ba-enriched layer reflects original oceanic conditions of increased biological productivity during sapropel deposition and not diagenetic Ba remobilization. Paleoredox indicators point to restricted oxygenated bottom water but not to fully anoxic conditions. Detrital elements within this layer indicate a lower eolian terrigenous input, enhanced humidity, and increased precipitation/runoff, thus likely higher nutrient supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barium concentrations were measured on 17 pore fluid and 13 sediment samples from Sites 1253 and 1254 drilled offshore Costa Rica during Ocean Drilling Program (ODP) Leg 205. An additional 83 pore fluid and 29 sediment samples were analyzed for Ba concentrations from Sites 1039 and 1040 drilled during ODP Leg 170 offshore Costa Rica. Sites 1039/1253 and 1040/1254 are part of a transect across the Middle America Trench offshore Nicoya Peninsula. The entire incoming sediment section is being underthrust beneath the margin, providing an ideal setting to examine Ba cycling in the shallow levels of the subduction zone. Results from these analyses indicate that a significant amount of Ba is liberated from the mineral barite (BaSO4) in the uppermost hemipelagic sediments arcward of the trench. The shallow distillation of Ba may impact the amount of sedimentary Ba reaching the deeper subduction zone.