77 resultados para Karyotyping
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
1. 1. Total hemolysates of Synbranchus marmoratus Bloch, 1795 captured at four different sites in the State of São Paulo, Brazil, showed two different hemoglobin phenotypes when submitted to agar-starch gel electrophoresis on glass slides in basic buffer. 2. 2. Phenotype I was characterized by 3 hemoglobin bands. When the total hemolysate was submitted to cellulose acetate electrophoresis in basic buffer containing 6 M urea and β-mercaptoethanol, Phenotype I showed four globins of the α 1, α 2, β and γ types, with 11.9 ± 1.9 g% total hemoglobin, 45.3 ± 3.6% globular volume, and 26.8 ± 4.4% mean corpuscular hemoglobin concentration (MCHC). 3. 3. Phenotype II showed three groups of hemoglobins, with a total of up to 12 hemoglobin bands. When the total hemolysate was submitted to cellulose acetate electrophoresis in basic buffer containing 6 M urea and β-mercaptoethanol, phenotype II showed five types of globins, denoted types α 1, α 2, γ 1, γ 2 and β, having electrophoretic positions different from those of Phenotype I globins, with 18.1 ± 3.3% total hemoglobin, 47.9 ± 6.4% globular volume, and 37.8 ± 4.4% MCHC. 4. 4. The distribution of the specimens having the two hemoglobin phenotypes is associated with the different geomorphological provinces of the State of São Paulo, suggesting the existence of at least two populational groups of Synbranchus marmoratus. © 1986.
Resumo:
Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with a de novo X;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed a de novo balanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated with de novo balanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process.
Resumo:
We report a case of a 57-year-old man diagnosed with chronic lymphocytic leukemia (CLL) and presence of a rare t(6;13)(p21;q14.1) in association with an extra copy of chromosome 12. Classical cytogenetic analysis using the immunostimulatory combination of DSP30 and IL-2 showed the karyotype 47,XY,t(6;13)(p21;q14.1), +12 in 75% of the metaphase cells. Spectral karyotype analysis (SKY) confirmed the abnormality previously seen by G-banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 12 probe performed on peripheral blood cells without any stimulant agent showed trisomy of chromosome 12 in 67% of analyzed cells (134/200). To the best of our knowledge, the association of t(6;13)(p21;q14.1) and +12 in CLL has never been described. The prognostic significance of these new findings in CLL remains to be elucidated. However, the patient has been followed up since 2009 without any therapeutic intervention and has so far remained stable.
Resumo:
This paper chronicles a 2-year-old girl who presented with acute leukemia/lymphoma syndrome of the T cell immuno-phenotype. At this time, the cytogenetic analysis of her bone marrow cells showed a reciprocal translocation between the short arm of chromosome 12 and the long arm of chromosome 13, t(12;13)(p13;q14). The immunophenotyping of bone marrow blast cells by flow cytometry revealed a population of cells positive for CD56, CD117, CD45, partial CD33, partial HLA-DR, CD13, CD7, CD2 and CD5. Therefore, a diagnosis of acute leukemia with a mixed T cell/myeloid phenotype was made. The patient had a poor response to classic T cell acute lymphocytic leukemia/lymphoma therapy; thus, her treatment was changed to a myeloid leukemia protocol, which produced a good response. She underwent a successful cord blood transplantation from an unrelated HLA partially matched donor. The coexistence of these two phenotypes prompts questions about the existence of clonal instability, which might influence the choice of therapy. The rarity of the t(12;13)(p13;q14) and the coexistence of T cell/myeloid markers suggest a nonrandom association. To the best of our knowledge, this is the first reported case in which a cell clone bearing a t(12;13)(p13;q14) translocation in a mixed T cell/myeloid lesion was detected. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
The uncommon simultaneous occurrence of an exuberant, angioma-like proliferation of superficial cerebral microvessels along with absence of the kidneys has been proposed to constitute a syndromic complex for which the term "meningocerebral angiodysplasia (or angiomatosis) with renal agenesis" (MCA-RA) is being descriptively used. We observed this constellation in one of a pair of dichorionic male twins following postpartal death in the 38th week of pregnancy. General autopsy revealed rudimentary metanephric anlagen made up of few residual glomeruli, cysts lined by flattened tubular epithelium, and islands of cartilage - corresponding to renal aplastic dysplasia. Largely inconspicuous with respect to its gyral pattern, as well as the configuration of the ventricular system, the brain microscopically showed extensive replacement of the cortex by a lattice of proliferating capillaries with necrosis of the intervening parenchyma. Minute foci of calcified necrosis were scattered in the deep subcortical white matter as well, while the ventricular ependyma and the subventricular germ cell layer remained remarkably intact. The cerebellum and brain stem appeared unaffected as well. Karyotyping of skin fibroblasts indicated a normal chromosome set of 46XY without gross structural anomalies. We interpret these findings as ones apt to being reasonably accommodated within the spectrum of MCA-RA. Although exceedingly rare, accurate identification of individual cases of MCA-RA is relevant both to differential diagnosis from its prognostically different look-alike "proliferative vasculopathy and hydranencephaly-hydrocephaly" (PVHH), and to refine the nosology of unconventional pediatric vascular malformations, for which the rather nonspecific label "angiodysgenetic necrotizing encephalopathy" is still commonly used.
Resumo:
Genetic analysis, both karyotyping and comparative genomic hybridization, of prostate cancer cell lines and specimens have revealed multiple areas of concordant increases in DNA content. An increase of DNA in specific regions of the genome in cancer is often associated with the amplification of oncogenes. Based on these observations we have hypothesized that oncogenes are involved in the initiation or progression of prostate cancer. An expression cloning approach was utilized to identify candidate oncogenes in prostate cancer. ^ A full-length, unidirectional cDNA expression library was constructed from DU145 prostate cancer cells. The cDNA library was screened using CP12, a rat prostate epithelial cell line. In soft agarose assays, CP12 (parental or vector transfected) do not form colonies. However, upon the introduction of a number of known oncogenes CP12 becomes anchorage independent in soft agarose. Based on this in-vitro phenotypic shift, a DU145 cDNA library was stably transfected into CP12, and selected for anchorage independence. Two hundred fifty nine anchorage independent clones were isolated. Some colonies contained more than one insert, bringing the candidate oncogene pool to approximately 400. Seven inserts were sequenced at random. Using the sequences obtained, GenBank was screened, and matches were found with p53, PARG1, a mitochondrial ATPase, RNF6, and three unknown genes that mapped to Unigene clusters. As the pool of cDNA inserts appeared promising, overexpressed genes were further selected. From 259 clones, 17 clones were overexpressed more than 6-fold in DU145 compared to Normal Prostate. From the 17 clones, 12 cDNA inserts were strongly expressed in DU145 and were isolated for sequencing. ^ Two of the sequences, 1G6 and 3E9, were identical. Expression of 1G6/2G9/3E9 was tested by RT-PCR. 1G6/2G9/3E9 was not expressed in normal prostate, but was expressed in all prostate cancer cell lines tested as well as six prostate cancer samples. When retransfected into CP12, 1G6/2G9/3E9 induced the formation of foci and anchorage independent colonies. Thus, functional and expression data suggest that 1G6/2G9/3E9 may be a prostate cancer oncogene. ^
Resumo:
The induced expression of c-Myc in plasmacytomas in BALB/c mice is regularly associated with nonrandom chromosomal translocations that juxtapose the c-myc gene to one of the Ig loci on chromosome 12 (IgH), 6 (IgK), or 16 (IgL). The DCPC21 plasmacytoma belongs to a small group of plasmacytomas that are unusual in that they appear to be translocation-negative. In this paper, we show the absence of any c-myc-activating chromosomal translocation for the DCPC21 by using fluorescent in situ hybridization, chromosome painting, and spectral karyotyping. We find that DCPC21 harbors c-myc and IgH genes on extrachromosomal elements (EEs) from which c-myc is transcribed, as shown by c-myc mRNA tracks and extrachromosomal gene transfer experiments. The transcriptional activity of these EEs is supported further by the presence of the transcription-associated phosphorylation of histone H3 (H3P) on the EEs. Thus, our data suggest that in this plasmacytoma, c-Myc expression is achieved by an alternative mechanism. The expression of the c-Myc oncoprotein is initiated outside the chromosomal locations of the c-myc gene, i.e., from EEs, which can be considered functional genetic units. Our data also imply that other “translocation-negative” experimental and human tumors with fusion transcripts or oncogenic activation may indeed carry translocation(s), however, in an extrachromosomal form.
Resumo:
Genetic and phenotypic instability are hallmarks of cancer cells, but their cause is not clear. The leading hypothesis suggests that a poorly defined gene mutation generates genetic instability and that some of many subsequent mutations then cause cancer. Here we investigate the hypothesis that genetic instability of cancer cells is caused by aneuploidy, an abnormal balance of chromosomes. Because symmetrical segregation of chromosomes depends on exactly two copies of mitosis genes, aneuploidy involving chromosomes with mitosis genes will destabilize the karyotype. The hypothesis predicts that the degree of genetic instability should be proportional to the degree of aneuploidy. Thus it should be difficult, if not impossible, to maintain the particular karyotype of a highly aneuploid cancer cell on clonal propagation. This prediction was confirmed with clonal cultures of chemically transformed, aneuploid Chinese hamster embryo cells. It was found that the higher the ploidy factor of a clone, the more unstable was its karyotype. The ploidy factor is the quotient of the modal chromosome number divided by the normal number of the species. Transformed Chinese hamster embryo cells with a ploidy factor of 1.7 were estimated to change their karyotype at a rate of about 3% per generation, compared with 1.8% for cells with a ploidy factor of 0.95. Because the background noise of karyotyping is relatively high, the cells with low ploidy factor may be more stable than our method suggests. The karyotype instability of human colon cancer cell lines, recently analyzed by Lengnauer et al. [Lengnauer, C., Kinzler, K. W. & Vogelstein, B. (1997) Nature (London) 386, 623–627], also corresponds exactly to their degree of aneuploidy. We conclude that aneuploidy is sufficient to explain genetic instability and the resulting karyotypic and phenotypic heterogeneity of cancer cells, independent of gene mutation. Because aneuploidy has also been proposed to cause cancer, our hypothesis offers a common, unique mechanism of altering and simultaneously destabilizing normal cellular phenotypes.
Resumo:
Oral squamous cell carcinomas are characterized by complex, often near-triploid karyotypes with structural and numerical variations superimposed on the initial clonal chromosomal alterations. We used immunohistochemistry combined with classical cytogenetic analysis and spectral karyotyping to investigate the chromosomal segregation defects in cultured oral squamous cell carcinoma cells. During division, these cells frequently exhibit lagging chromosomes at both metaphase and anaphase, suggesting defects in the mitotic apparatus or kinetochore. Dicentric anaphase chromatin bridges and structurally altered chromosomes with consistent long arms and variable short arms, as well as the presence of gene amplification, suggested the occurrence of breakage–fusion–bridge cycles. Some anaphase bridges were observed to persist into telophase, resulting in chromosomal exclusion from the reforming nucleus and micronucleus formation. Multipolar spindles were found to various degrees in the oral squamous cell carcinoma lines. In the multipolar spindles, the poles demonstrated different levels of chromosomal capture and alignment, indicating functional differences between the poles. Some spindle poles showed premature splitting of centrosomal material, a precursor to full separation of the microtubule organizing centers. These results indicate that some of the chromosomal instability observed within these cancer cells might be the result of cytoskeletal defects and breakage–fusion–bridge cycles.
Resumo:
We previously generated a transgenic mouse model for acute promyelocytic leukemia (APL) by expressing the promyelocytic leukemia (PML)–retinoic acid receptor (RARα) cDNA in early myeloid cells. This fusion protein causes a myeloproliferative disease in 100% of animals, but only 15–20% of the animals develop acute leukemia after a long latency period (6–13 months). PML-RARα is therefore necessary, but not sufficient, for APL development. The coexpression of a reciprocal form of the fusion, RARα-PML, increased the likelihood of APL development (55–60%), but did not shorten latency. Together, these results suggested that additional genetic events are required for the development of APL. We therefore evaluated the splenic tumor cells from 18 transgenic mice with APL for evidence of secondary genetic events, by using spectral karyotyping analysis. Interstitial or terminal deletions of the distal region of one copy of chromosome 2 [del(2)] were found in 1/5 tumors expressing PML-RARα, but in 11/13 tumors expressing both PML-RARα and RARα-PML (P < 0.05). Leukemic cells that contained a deletion on chromosome 2 often contained additional chromosomal gains (especially of 15), chromosomal losses (especially of 11 or X/Y), or were tetraploid (P ≤ 0.001). These changes did not commonly occur in nontransgenic littermates, nor in aged transgenic mice that did not develop APL. These results suggest that expression of RARα-PML increases the likelihood of chromosome 2 deletions in APL cells. Deletion 2 appears to predispose APL cells to further chromosomal instability, which may lead to the acquisition of additional changes that provide an advantage to the transformed cells.
Resumo:
Este estudo teve como objetivos (a) identificar mecanismos pelos quais rearranjos cromossômicos citogeneticamente equilibrados possam estar associados de maneira causal a determinados quadros clínicos e (b) contribuir para a compreensão dos mecanismos de formação desses rearranjos. Para isso, foram estudados 45 rearranjos cromossômicos citogeneticamente equilibrados (29 translocações, 10 inversões e seis rearranjos complexos), detectados em pacientes que apresentavam malformações congênitas, comprometimento do desenvolvimento neuropsicomotor ou déficit intelectual. Foram 31 rearranjos cromossômicos esporádicos, três familiais que segregavam com o quadro clínico e mais 11 rearranjos cromossômicos herdados de genitores fenotipicamente normais. Inicialmente os pontos de quebra desses rearranjos foram mapeados por hibridação in situ fluorescente (FISH). A busca por microdeleções e duplicações genômicas foi realizada por a-CGH. A investigação dos pontos de quebra prosseguiu com a aplicação da técnica de Mate-Pair Sequencing (MPS), que permite localizar as quebras em segmentos de 100 pb - 1 kb, na maioria dos casos. Para obter os segmentos de junção das quebras no nível de pares de bases, os segmentos delimitados por MPS foram sequenciados pelo método de Sanger. A análise por aCGH revelou microdeleções ou microduplicações localizadas nos cromossomos rearranjados, em 12 dos 45 pacientes investigados (27%). A análise de 27 rearranjos por MPS permitiu a caracterização dos pontos de junção das quebras. MPS expandiu o número de pontos de quebra, detectados por análise do cariótipo ou aCGH, de 114 para 156 (em resolução < 2kb, na maioria dos casos). O número de pontos de quebra/rearranjo variou de 2 a 20. Os 156 pontos de quebra resultaram em 86 variantes estruturais equilibradas e outras 32 variantes não equilibradas. Perdas e ganhos de segmentos submiscroscópicos nos cromossomos rearranjados constituíram a principal causa ou, provavelmente, contribuíram para o quadro clínico de 12 dos 45 pacientes. Em cinco desses 12 rearranjos foram detectadas por MPS a interrupção de genes já relacionados à doença, ou provável alteração de sua região reguladora, contribundo para o quadro clínico. Em quatro dos 33 rearranjos não associados a perdas ou ganhos de segmentos, a análise por MPS revelou a interrupção de genes que já foram anteriormente relacionados a doenças, explicando-se, assim, as características clínicas dos portadores; outro rearranjo pode ter levando alteração da expressão gênica de gene sensível a dosagem e ao quadro clínico. Um rearranjo cromossômico familial, identificado na análise após bandamento G como uma translocação equilibrada, t(2;22)(p14;q12), segregava com quadro de atraso do desenvolvimento neuropsicomotor e dificuldade de aprendizado associados a dismorfismos. A combinação das análises por FISH, aCGH e MPS revelou que se tratava, na verdade, de rearranjo complexo entre os cromossomos 2, 5 e 22, incluindo 10 quebras. A segregação de diferentes desequilíbrios submicroscópicos em indivíduos afetados e clinicamente normais permitiu a compreensão da variabilidade clínica observada na família. Rearranjos equilibrados detectados em indivíduos afetados, mas herdados de genitores clinicamente normais, são, em geral, considerados como não tendo relação com o quadro clínico, apesar da possibilidade de desequilíbrios cromossômicos gerados por permuta desigual na meiose do genitor portador do rearranjo. Neste trabalho, a investigação de 11 desses rearranjos por aCGH não revelou perdas ou ganhos de segmentos nos cromossomos rearranjados. No entanto, a análise por aCGH da portadora de um desses rearranjos - inv(12)mat - revelou deleção de 8,7 Mb no cromossomo 8, como causa de seu fenótipo clínico. Essa deleção estava relacionada com outro rearranjo equilibrado também presente em sua mãe, independente da inversão. Para compreender os mecanismos de formação de rearranjos citogeneticamente equilibrados, investigamos os segmentos de junção no nível de pares de base. A análise por MPS que levou, na maioria dos casos, ao mapeamento dos pontos de quebras em segmentos <1kb permitiu o sequenciamento pelo método de Sanger de 51 segmentos de junções de 17 rearranjos. A ocorrência de blunt fusions ou inserções e deleções <10 pb, e a ausência de homologia ou a presença de micro homologia de 2 pb a 4 pb de extensão indicaram o mecanismo de junção de extremidades não homólogas (non-homologous end joinging; NHEJ), na maioria das 51 junções caracterizadas. As características de três dos quatro rearranjos mais complexos, com 17-20 quebras, indicaram sua formação pelo mecanismo de chromothripsis. Este estudo mostra a importância da análise genômica de variações de número de cópias por microarray, juntamente com o mapeamento dos pontos de quebra por MPS, para determinar a estrutura de rearranjos cromossômicos citogeneticamente equilibrados e seu impacto clínico. O mapeamento dos segmentos de junção por MPS, permitindo o sequenciamento pelo método de Sanger, foi essencial para a compreensão de mecanismos de formação desses rearranjos