958 resultados para Josephson-junctions
Resumo:
A new geometry (semiannular) for Josephson junction has been proposed and theoretical studies have shown that the new geometry is useful for electronic applications [1, 2]. In this work we study the voltage‐current response of the junction with a periodic modulation. The fluxon experiences an oscillating potential in the presence of the ac‐bias which increases the depinning current value. We show that in a system with periodic boundary conditions, average progressive motion of fluxon commences after the amplitude of the ac drive exceeds a certain threshold value. The analytic studies are justified by simulating the equation using finite‐difference method. We observe creation and annihilation of fluxons in semiannular Josephson junction with an ac‐bias in the presence of an external magnetic field.
Resumo:
Since ductile fracture (rupture) is the process by which junctions are separated and which prevents ever-increasing plasticity and junction growth, it is argued that models of friction ought to include toughness as well as yield strength. An expression for the coefficient of sliding friction is derived using ductile fracture mechanics. The predictions are quite reasonable.
Resumo:
Ulcerative colitis is characterised by impairment of the epithelial barrier and tight junction alterations resulting in increased intestinal permeability. UC is less common in smokers with smoking reported to decrease paracellular permeability. The aim of this study was thus to determine the effect of nicotine, the major constituent in cigarettes and its metabolites on the integrity of tight junctions in Caco-2 cell monolayers. The integrity of Caco-2 tight junctions was analysed by measuring the transepithelial electrical resistance (TER) and by tracing the flux of the fluorescent marker fluorescein, after treatment with various concentrations of nicotine or nicotine metabolites over 48 h. TER was significantly higher compared to the control for all concentrations of nicotine 0.01-10 M at 48 h (p < 0.001), and for 0.01 mu M (p < 0.001) and 0.1 mu M and 10 M nicotine (p < 0.01) at 12 and 24 h. The fluorescein flux results supported those of the TER assay. TER readings for all nicotine metabolites tested were also higher at 24 and 48 h only (p <= 0.01). Western blot analysis demonstrated that nicotine up-regulated the expression of the tight junction proteins occludin and claudin-l (p < 0.01). Overall, it appears that nicotine and its metabolites, at concentrations corresponding to those reported in the blood of smokers, can significantly improve tight junction integrity, and thus, decrease epithelial gut permeability. We have shown that in vitro, nicotine appears more potent than its metabolites in decreasing epithelial gut permeability. We speculate that this enhanced gut barrier may be the result of increased expression of claudin-l and occludin proteins, which are associated with the formation of tight junctions. These findings may help explain the mechanism of action of nicotine treatment and indeed smoking in reducing epithelial gut permeability. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Connexins are a widespread family of membrane proteins that assemble into hexameric hemichannels, also known as connexons. Connexons regulate membrane permeability in individual cells or couple between adjacent cells to form gap junctions and thereby provide a pathway for regulated intercellular communication. We have now examined the role of connexins in platelets, blood cells that circulate in isolation, but upon tissue injury adhere to each other and the vessel wall to prevent blood loss and facilitate wound repair. METHODS AND RESULTS: We report the presence of connexins in platelets, notably connexin37, and that the formation of gap junctions within platelet thrombi is required for the control of clot retraction. Inhibition of connexin function modulated a range of platelet functional responses prior to platelet-platelet contact, and reduced laser induced thrombosis in vivo in mice. Deletion of the Cx37 gene (Gja4) in transgenic mice reduced platelet aggregation, fibrinogen binding, granule secretion and clot retraction indicating an important role for Cx37 hemichannels and gap junctions in platelet thrombus function. CONCLUSIONS: Together, these data demonstrate that platelet gap junctions and hemichannels underpin the control of haemostasis and thrombosis and represent potential therapeutic targets.
Resumo:
Platelets are involved in the maintenance of haemostasis but their inappropriate activation leads to thrombosis, a principal trigger for heart attack and ischemic stroke. Although platelets circulate in isolation, upon activation they accumulate or aggregate together to form a thrombus, where they function in a coordinated manner to prevent loss of blood and control wound repair. Recent reports indicate that the stability and functions of a thrombus are maintained through sustained, contact dependent signalling between platelets. Given the role of gap junctions in the coordination of tissue responses, it was hypothesized that gap junctions may be present within a thrombus and mediate intercellular communication between platelets. Therefore studies were performed to explore the presence and functions of connexins in platelets. In this brief review, the roles of hemichannels and gap junctions in the control of thrombosis and haemostasis and the future directions for this research will be discussed.
Resumo:
The possibility to compress analyte bands at the beginning of CE runs has many advantages. Analytes at low concentration can be analyzed with high signal-to-noise ratios by using the so-called sample stacking methods. Moreover, sample injections with very narrow initial band widths (small initial standard deviations) are sometimes useful, especially if high resolutions among the bands are required in the shortest run time. In the present work, a method of sample stacking is proposed and demonstrated. It is based on BGEs with high thermal sensitive pHs (high dpH/dT) and analytes with low dpK(a)/dT. High thermal sensitivity means that the working pK(a) of the BGE has a high dpK(a)/dT in modulus. For instance, Tris and Ethanolamine have dpH/dT = -0.028/degrees C and -0.029/degrees C, respectively, whereas carboxylic acids have low dpK(a)/dT values, i.e. in the -0.002/degrees C to+0.002/degrees C range. The action of cooling and heating sections along the capillary during the runs affects also the local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band compression is theoretically calculated using a simple model. Finally, this stacking method was demonstrated for amino acids derivatized with naphthalene-2,3-dicarboxaldehyde and fluorescamine using a temperature difference of 70 degrees C between two neighbor sections and Tris as separation buffer. In this case, the BGE has a high pH thermal coefficient whereas the carboxylic groups of the analytes have low pK(a) thermal coefficients. The application of these dynamic thermal gradients increased peak height by a factor of two (and decreased the standard deviations of peaks by a factor of two) of aspartic acid and glutamic acid derivatized with naphthalene-2,3-dicarboxaldehyde and serine derivatized with fluorescamine. The effect of thermal compression of bands was not observed when runs were accomplished using phosphate buffer at pH 7 (negative control). Phosphate has a low dpH/dT in this pH range, similar to the dK(a)/dT of analytes. It is shown that vertical bar dK(a)/dT-dpH/dT vertical bar >> 0 is one determinant factor to have significant stacking produced by dynamic thermal junctions.
Resumo:
In a previous work [M. Mandaji, et al., this issue] a sample stacking method was theoretically modeled and experimentally demonstrated for analytes with low dpK(a)/dT (analytes carrying carboxylic groups) and BGEs with high dpH/dT (high pH-temperature-coefficients). In that work, buffer pH was modulated with temperature, inducing electrophoretic mobility changes in the analytes. In the present work, the opposite conditions are studied and tested, i.e. analytes with high dpK(a)/dT and BGEs that exhibit low dpH/dT. It is well known that organic bases such as amines, imidazoles, and benzimidazoles exhibit high dpK(a)/dT. Temperature variations induce instantaneous changes on the basicity of these and other basic groups. Therefore, the electrophoretic velocity of some analytes changes abruptly when temperature variations are applied along the capillary. This is true only if BGE pH remains constant or if it changes in the opposite direction of pK(a) of the analyte. The presence of hot and cold sections along the capillary also affects local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band stacking efficacy was also taken into account in the theoretical model presented. Finally, this stacking method is demonstrated for lysine partially derivatized with naphthalene-2,3-dicarboxaldehyde. In this case, the amino group of the lateral chain was left underivatized and only the alpha amino group was derivatized. Therefore, the basicity of the lateral amino group, and consequently the electrophoretic mobility, was modulated with temperature while the pH of the buffer used remained unchanged.
Resumo:
Apresenta-se neste trabalho um estudo experimental da dinâmica do fluxo magnético intergranular no cuprato supercondutor Y Ba2Cu3O7 e nos compósitos Y Ba2CU3O7 fi/Ag para várias concentrações de prata. Verificou-se que sob certas condições é possível separar os efeitos da dinâmica do fluxo de Josephson daqueles resultantes da dinâmica de Abrikosov. Através da técnica de medidas de magnetização DC foram obtidas as linhas de depinning inicial e de irreversibilidade magnética em campo magnético aplicado até 120 Oe. O revestimento dos grãos supercondutores aparentemente não afeta a energia de acoplamento dos elos fracos entre os grãos e o potencial de pinning até 16.1 % em peso de prata. A vantagem da mistura da prata é que esta melhora as propriedades mecânicas dos óxidos supercondutores além de melhorar as correntes críticas do sistema. Observamos que o depinning do fluxo de Josephson começa numa temperatura bem definida, dependendo do campo magnético aplicado e gradualmente aumenta com a temperatura até ou muito próximo do limite de irreversibilidade, acima do qual todo o fluxo intergranular (e intragranular) está livre. As linhas de irreversibilidade das nossas amostras podem ser entendidas dentro do modelo do Vidro supercondutor.
Resumo:
The neuromuscular junction of the extensor digitorum longus muscle of fingers was analyzed in 21 young (three months) and old (from six to 25 months) mice, from both genders. Morphologic changes were found throughout the mouse life, being more frequent and visible with aging. According with the data described in the literature consulted and the observations taken in this research, it becomes clear that a continuous process of morphological remodeling occurs in all neuromuscular ultrastructural junctions of the extensor digitorum longus muscle of fingers, during the life of the animal. Theses changes are characterized by figures of myelin in the cytoplasm of Schwann cells, pleomorphic and multivesiclar bodies, mitochondrias with morphologically altered crests in the axon terminal and degenerated junction folders. Coated vesicles are common in older animals and rare in young animals.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Using the axially symmetric time-dependent Gross-Pitaevskii equation we study the Josephson oscillation of an attractive Bose-Einstein condensate (BEC) in a one-dimensional periodic optical-lattice potential. We find that the Josephson frequency is virtually independent of the number of atoms in the BEC and of the interatomic interaction (attractive or repulsive). We study the dependence of the Josephson frequency on the laser wave length and the strength of the optical-lattice potential. For a fixed laser wave length (795 nm), the Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti [Science 293, 843 (2001)]. For a fixed strength, the Josephson frequency remains essentially unchanged for a reasonable variation of laser wave length around 800 nm. However, the Josephson oscillation is disrupted with the increase of laser wave length beyond 2000 nm leading to a collapse of a sufficiently attractive BEC. These features of a Josephson oscillation can be tested experimentally with present setups.