990 resultados para Josephson Junction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study quasiparticle tunneling in Josephson tunnel junctions embedded in an electromagnetic environment. We identify tunneling processes that transfer electrical charge and couple to the environment in a way similar to that of normal electrons, and processes that mix electrons and holes and are thus creating charge superpositions. The latter are sensitive to the phase difference between the superconductors and are thus limited by phase diffusion even at zero temperature. We show that the environmental coupling is suppressed in many environments, thus leading to lower quasiparticle decay rates and better superconductor qubit coherence than previously expected. Our approach is nonperturbative in the environmental coupling strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil/water two-phase flow inside T-junctions was numerically simulated with a 3-D two-fluid model, and the turbulence was described using the mixture k - epsilon model. Some experiments of oil/water flow inside a single T-junction were conducted in the laboratory. The results show that the separating performance of T-junction largely depends oil the inlet volumetric fraction and flow patterns. A reasonable agreement is reached between the numerical simulation and the experiments for both the oil fraction distribution and the separation efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaInP/GaAs dual-junction solar cell with a conversion efficiency of 25.2% has been fabricated using metalorganic chemical vapor deposition (MOCVD) technique. Quantum efficiencies of the solar cell were measured within a temperature range from 25 to 160A degrees C. The results indicate that the quantum efficiencies of the subcells increase slightly with the increasing temperature. And red-shift phenomena of absorption limit for all subcells are observed by increasing the cell's work temperature, which are consistent with the viewpoint of energy gap narrowing effect. The short-circuit current density temperature coefficients dJ (sc)/dT of GaInP subcell and GaAs subcell are determined to be 8.9 and 7.4 mu A/cm(2)/A degrees C from the quantum efficiency data, respectively. And the open-circuit cell voltage temperature coefficients dV (oc)/dT calculated based on a theoretical equation are -2.4 mV/A degrees C and -2.1 mV/A degrees C for GaInP subcell and GaAs subcell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the tunneling characteristics of a tin-tin oxide-lead junction, a direct measurement has been made of the energy-gap variation for a superconductor carrying a current in a compensated geometry. Throughout the region investigated – several temperatures near Tc and down to a reduced temperature t = 0.8 –the observed current dependence agrees quite well with predictions based on the Ginzburg-Landau-Gor’kov theory. Near Tc the predicted temperature dependence is also well verified, though deviations are observed at lower temperatures; even for the latter, the data are internally consistent with the temperature dependence of the experimental critical current. At the lowest temperature investigated, t = 0.8, a small “Josephson” tunneling current allowed further a direct measurement of the electron drift velocity at low current densities. From this, a preliminary experimental value of the critical velocity, believed to be the first reported, can be inferred in the basis of Ginzburg-Landau theory. For tin at t = 0.8, we find vc = 87 m/sec. This value does not appear fully consistent with those predicted by recent theories for superconductors with short electronic mean-free-paths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The physical phenomena which will ultimately limit the packing density of planar bipolar and MOS integrated circuits are examined. The maximum packing density is obtained by minimizing the supply voltage and the size of the devices. The minimum size of a bipolar transistor is determined by junction breakdown, punch-through and doping fluctuations. The minimum size of a MOS transistor is determined by gate oxide breakdown and drain-source punch-through. The packing density of fully active bipolar or static non-complementary MOS circuits becomes limited by power dissipation. The packing density of circuits which are not fully active such as read-only memories, becomes limited by the area occupied by the devices, and the frequency is limited by the circuit time constants and by metal migration. The packing density of fully active dynamic or complementary MOS circuits is limited by the area occupied by the devices, and the frequency is limited by power dissipation and metal migration. It is concluded that read-only memories will reach approximately the same performance and packing density with MOS and bipolar technologies, while fully active circuits will reach the highest levels of integration with dynamic MOS or complementary MOS technologies.

Part II

Because the Schottky diode is a one-carrier device, it has both advantages and disadvantages with respect to the junction diode which is a two-carrier device. The advantage is that there are practically no excess minority carriers which must be swept out before the diode blocks current in the reverse direction, i.e. a much faster recovery time. The disadvantage of the Schottky diode is that for a high voltage device it is not possible to use conductivity modulation as in the p i n diode; since charge carriers are of one sign, no charge cancellation can occur and current becomes space charge limited. The Schottky diode design is developed in Section 2 and the characteristics of an optimally designed silicon Schottky diode are summarized in Fig. 9. Design criteria and quantitative comparison of junction and Schottky diodes is given in Table 1 and Fig. 10. Although somewhat approximate, the treatment allows a systematic quantitative comparison of the devices for any given application.

Part III

We interpret measurements of permittivity of perovskite strontium titanate as a function of orientation, temperature, electric field and frequency performed by Dr. Richard Neville. The free energy of the crystal is calculated as a function of polarization. The Curie-Weiss law and the LST relation are verified. A generalized LST relation is used to calculate the permittivity of strontium titanate from zero to optic frequencies. Two active optic modes are important. The lower frequency mode is attributed mainly to motion of the strontium ions with respect to the rest of the lattice, while the higher frequency active mode is attributed to motion of the titanium ions with respect to the oxygen lattice. An anomalous resonance which multi-domain strontium titanate crystals exhibit below 65°K is described and a plausible mechanism which explains the phenomenon is presented.