916 resultados para Jacobian-free Newton-Krylov method
Resumo:
In this paper is presented a new approach for optimal power flow problem. This approach is based on the modified barrier function and the primal-dual logarithmic barrier method. A Lagrangian function is associated with the modified problem. The first-order necessary conditions for optimality are fulfilled by Newton's method, and by updating the barrier terms. The effectiveness of the proposed approach has been examined by solving the Brazilian 53-bus, IEEE118-bus and IEEE162-bus systems.
Resumo:
This paper presents a new approach to the resolution of the Optimal Power Flow problem. In this approach the inequality constraints are treated by the Modified Barrier and Primal-Dual Logarithmic Barrier methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables, which are perturbed by the barrier parameter. A Lagrangian function is associated with the modified problem. The first-order necessary conditions are applied to the Lagrangian, generating a nonlinear system which is solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. Numerical tests on the Brazilian CESP and South-Southeast systems and a comparative test indicated that the new approach efficiently resolves of the Optimal Power Flow problem. © 2007 IEEE.
Resumo:
Máster en Oceanografía
Resumo:
Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers
Resumo:
Electric probes are objects immersed in the plasma with sharp boundaries which collect of emit charged particles. Consequently, the nearby plasma evolves under abrupt imposed and/or naturally emerging conditions. There could be localized currents, different time scales for plasma species evolution, charge separation and absorbing-emitting walls. The traditional numerical schemes based on differences often transform these disparate boundary conditions into computational singularities. This is the case of models using advection-diffusion differential equations with source-sink terms (also called Fokker-Planck equations). These equations are used in both, fluid and kinetic descriptions, to obtain the distribution functions or the density for each plasma species close to the boundaries. We present a resolution method grounded on an integral advancing scheme by using approximate Green's functions, also called short-time propagators. All the integrals, as a path integration process, are numerically calculated, what states a robust grid-free computational integral method, which is unconditionally stable for any time step. Hence, the sharp boundary conditions, as the current emission from a wall, can be treated during the short-time regime providing solutions that works as if they were known for each time step analytically. The form of the propagator (typically a multivariate Gaussian) is not unique and it can be adjusted during the advancing scheme to preserve the conserved quantities of the problem. The effects of the electric or magnetic fields can be incorporated into the iterative algorithm. The method allows smooth transitions of the evolving solutions even when abrupt discontinuities are present. In this work it is proposed a procedure to incorporate, for the very first time, the boundary conditions in the numerical integral scheme. This numerical scheme is applied to model the plasma bulk interaction with a charge-emitting electrode, dealing with fluid diffusion equations combined with Poisson equation self-consistently. It has been checked the stability of this computational method under any number of iterations, even for advancing in time electrons and ions having different time scales. This work establishes the basis to deal in future work with problems related to plasma thrusters or emissive probes in electromagnetic fields.
Resumo:
A new variant of the Element-Free Galerkin (EFG) method, that combines the diffraction method, to characterize the crack tip solution, and the Heaviside enrichment function for representing discontinuity due to a crack, has been used to model crack propagation through non-homogenous materials. In the case of interface crack propagation, the kink angle is predicted by applying the maximum tangential principal stress (MTPS) criterion in conjunction with consideration of the energy release rate (ERR). The MTPS criterion is applied to the crack tip stress field described by both the stress intensity factor (SIF) and the T-stress, which are extracted using the interaction integral method. The proposed EFG method has been developed and applied for 2D case studies involving a crack in an orthotropic material, crack along an interface and a crack terminating at a bi-material interface, under mechanical or thermal loading; this is done to demonstrate the advantages and efficiency of the proposed methodology. The computed SIFs, T-stress and the predicted interface crack kink angles are compared with existing results in the literature and are found to be in good agreement. An example of crack growth through a particle-reinforced composite materials, which may involve crack meandering around the particle, is reported.
Resumo:
Solving microkinetics of catalytic systems, which bridges microscopic processes and macroscopic reaction rates, is currently vital for understanding catalysis in silico. However, traditional microkinetic solvers possess several drawbacks that make the process slow and unreliable for complicated catalytic systems. In this paper, a new approach, the so-called reversibility iteration method (RIM), is developed to solve microkinetics for catalytic systems. Using the chemical potential notation we previously proposed to simplify the kinetic framework, the catalytic systems can be analytically illustrated to be logically equivalent to the electric circuit, and the reaction rate and coverage can be calculated by updating the values of reversibilities. Compared to the traditional modified Newton iteration method (NIM), our method is not sensitive to the initial guess of the solution and typically requires fewer iteration steps. Moreover, the method does not require arbitrary-precision arithmetic and has a higher probability of successfully solving the system. These features make it ∼1000 times faster than the modified Newton iteration method for the systems we tested. Moreover, the derived concept and the mathematical framework presented in this work may provide new insight into catalytic reaction networks.
Resumo:
This paper presents an accurate and robust geometric and material nonlinear formulation to predict structural behaviour of unprotected steel members at elevated temperatures. A fire analysis including large displacement effects for frame structures is presented. This finite element formulation of beam-column elements is based on the plastic hinge approach to model the elasto-plastic strain-hardening material behaviour. The Newton-Raphson method allowing for the thermal-time dependent effect was employed for the solution of the non-linear governing equations for large deflection in thermal history. A combined incremental and total formulation for determining member resistance is employed in this nonlinear solution procedure for the efficient modeling of nonlinear effects. Degradation of material strength with increasing temperature is simulated by a set of temperature-stress-strain curves according to both ECCS and BS5950 Part 8, which implicitly allows for creep deformation. The effects of uniform or non-uniform temperature distribution over the section of the structural steel member are also considered. Several numerical and experimental verifications are presented.
Resumo:
Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.
Resumo:
One of the most important applications of adaptive systems is in noise cancellation using adaptive filters. Ln this paper, we propose adaptive noise cancellation schemes for the enhancement of EEG signals in the presence of EOG artifacts. The effect of two reference inputs is studied on simulated as well as recorded EEG signals and it is found that one reference input is enough to get sufficient minimization of EOG artifacts. This has been verified through correlation analysis also. We use signal to noise ratio and linear prediction spectra, along with time plots, for comparing the performance of the proposed schemes for minimizing EOG artifacts from contaminated EEG signals. Results show that the proposed schemes are very effective (especially the one which employs Newton's method) in minimizing the EOG artifacts from contaminated EEG signals.
Resumo:
This paper presents a numerical simulation of the well-documented, fluid-controlled Kabbal and Ponmudi type gneiss-chamockite transformations in southern India using a free energy minimization method. The computations have considered all the major solid phases and important fluid species in the rock - C-O-H and rock - C-O-H-N systems. Appropriate activity-composition relations for the solid solutions and equations of state for the fluids have been included in order to evaluate the mineral-fluid equilibria attending the incipient chamockite development in the gneisses. The C-O-H fluid speciation pattern in both the Kabbal and Ponmudi type systems indicates that CO2 and H2O make up the bulk of the fluid phase with CO, CH4, H-2 and O2 as minor constituents. In the graphite-buffered Ponmudi-system, the abundance of CO, CH4 and H-2 is orders of magnitude higher than that in the graphite-free Kabbal system. Simulation with C-O-H-N fluids of varying composition demonstrates the complementary role of CO2 and N2 as rather inert dilutants of H2O in the fluid phase. The simulation, carried out on available whole-rock data, has demonstrated the dependence of the transformation X(H2O) on P,T, and phase and chemical composition of the precursor gneiss.
Resumo:
A 48 d.o.f., four-noded quadrilateral laminated composite shell finite element is particularised to a sector finite element and is used for the large deformation analysis of circular composite laminated plates. The strain-displacement relationships for the sector element are obtained by reducing those of the quadrilateral shell finite element by substituting proper values for the geometric parameters. Subsequently, the linear and tangent stiffness matrices are formulated using conventional methods. The Newton-Raphson method is employed as the nonlinear solution technique. The computer code developed is validated by solving an isotropic case for which results are available in the literature. The method is then applied to solve problems of cylindrically orthotropic circular plates. Some of the results of cylindrically orthotropic case are compared with those available in the literature. Subsequently, application is made to the case of laminated composite circular plates having different lay-up schemes. The computer code can handle symmetric/unsymmetric lay-up schemes. The large displacement analysis is useful in estimating the damage in composite plates caused by low-velocity impact.
Resumo:
This paper presents a new approach to the power flow analysis in steady state for multiterminal DC-AC systems. A flexible and practical choice of per unit system is used to formulate the DC network and converter equations. A converter is represented by Norton's equivalent of a current source in parallel with the commutation resistance. Unlike in previous literature, the DC network equations are used to derive the controller equations for the DC system using a subset of specifications. The specifications considered are current or power at all terminals except the slack terminal where the DC voltage is specified. The control equations are solved by Newton's method, using the current injections at the converter terminals as state variables. Further, a systematic approach to the handling of constraints is proposed by identifying the priorities in rescheduling of the specified variables. The methodology is illustrated by example of a 5 terminal DC system.
Resumo:
Abstract—A method of testing for parametric faults of analog circuits based on a polynomial representaion of fault-free function of the circuit is presented. The response of the circuit under test (CUT) is estimated as a polynomial in the applied input voltage at relevant frequencies apart from DC. Classification of CUT is based on a comparison of the estimated polynomial coefficients with those of the fault free circuit. The method needs very little augmentation of circuit to make it testable as only output parameters are used for classification. This procedure is shown to uncover several parametric faults causing smaller than 5 % deviations the nominal values. Fault diagnosis based upon sensitivity of polynomial coefficients at relevant frequencies is also proposed.