727 resultados para Jacobi-functies.
Resumo:
Some postulates are introduced to go from the classical Hamilton-Jacobi theory to the quantum one. We develop two approaches in order to calculate propagators, establishing the connection between them and showing the equivalence of this picture with more known ones such as the Schrödinger's and the Feynman's formalisms. Applications of the above-mentioned approaches to both the standard case of the harmonic oscillator and to the harmonic oscillator with time-dependent parameters are made. © 1991 Plenum Publishing Corporation.
Resumo:
Properties of the Jacobi script v sign3-function and its derivatives under discrete Fourier transforms are investigated, and several interesting results are obtained. The role of modulo N equivalence classes in the theory of script v sign-functions is stressed. An important conjecture is studied. © 2006 American Institute of Physics.
Resumo:
In this work we discuss the Hamilton-Jacobi formalism for fields on the null-plane. The Real Scalar Field in (1+1) - dimensions is studied since in it lays crucial points that are presented in more structured fields as the Electromagnetic case. The Hamilton-Jacobi formalism leads to the equations of motion for these systems after computing their respective Generalized Brackets. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
Non-abelian gauge theories are super-renormalizable in 2+1 dimensions and suffer from infrared divergences. These divergences can be avoided by adding a Chern-Simons term, i.e., building a Topologically Massive Theory. In this sense, we are interested in the study of the Topologically Massive Yang-Mills theory on the Null-Plane. Since this is a gauge theory, we need to analyze its constraint structure which is done with the Hamilton-Jacobi formalism. We are able to find the complete set of Hamiltonian densities, and build the Generalized Brackets of the theory. With the GB we obtain a set of involutive Hamiltonian densities, generators of the evolution of the system. © 2010 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we develop the Hamilton - Jacobi formalism to study the Podolsky electromagnetic theory on the null-plane coordinates. We calculate the generators of the Podolsky theory and check the integrability conditions. Appropriate boundary conditions are introduced to assure uniqueness of the Green functions associated to the differential operators. Non-involutive constraints in the Hamilton-Jacobi formalism are eliminated by constructing their respective generalized brackets. © 2013 American Institute of Physics.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the scattering equations recently proposed by Cachazo, He and Yuan in the special kinematics where their solutions can be identified with the zeros of the Jacobi polynomials. This allows for a non-trivial two-parameter family of kinematics. We present explicit and compact formulas for the n-gluon and n-graviton partial scattering amplitudes for our special kinematics in terms of Jacobi polynomials. We also provide alternative expressions in terms of gamma functions. We give an interpretation of the common reduced determinant appearing in the amplitudes as the product of the squares of the eigenfrequencies of small oscillations of a system whose equilibrium is the solutions of the scattering equations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)