944 resultados para Jacket Platform
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Thesis submitted in fulfilment of the requirements for the Degree of Master of Science in Computer Science
Resumo:
Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/μl) with 10 times lower solution volume (3 μl). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.
Resumo:
OutSystems Platform is used to develop, deploy, and maintain enterprise web an mobile web applications. Applications are developed through a visual domain specific language, in an integrated development environment, and compiled to a standard stack of web technologies. In the platform’s core, there is a compiler and a deployment service that transform the visual model into a running web application. As applications grow, compilation and deployment times increase as well, impacting the developer’s productivity. In the previous model, a full application was the only compilation and deployment unit. When the developer published an application, even if he only changed a very small aspect of it, the application would be fully compiled and deployed. Our goal is to reduce compilation and deployment times for the most common use case, in which the developer performs small changes to an application before compiling and deploying it. We modified the OutSystems Platform to support a new incremental compilation and deployment model that reuses previous computations as much as possible in order to improve performance. In our approach, the full application is broken down into smaller compilation and deployment units, increasing what can be cached and reused. We also observed that this finer model would benefit from a parallel execution model. Hereby, we created a task driven Scheduler that executes compilation and deployment tasks in parallel. Our benchmarks show a substantial improvement of the compilation and deployment process times for the aforementioned development scenario.
Resumo:
The following work project illustrates the strategic issues There App, a mobile application, faces regarding the opportunity to expand from its current state as a product to a multisided platform. Initially, a market analysis is performed to identify the ideal customer groups to be integrated in the platform. Strategic design issues are then discussed on how to best match its value proposition with the identified market opportunity. Suggestions on how the company should organize its resources and operational processes to best deliver on its value proposition complete the work.
Resumo:
Due to the progresses made in the branch of embedded technologies, manufacturers are becoming able to pack their shop floor level manufacturing resources with even more complex functionalities. This technological progression is radically changing the way production systems are designed and deployed, as well as, monitored and controlled. The dissemination of smart devices inside production processes confers new visibility on the production system while enabling for a more efficient and effective management of the operations. By turning the current manufacturing resources functionalities into services based on a Service Oriented Architecture (SOA), in order to expose them as a service to the user, the binomial manufacturing resource/service will push the entire manufacturing enterprise visibility to another level while enabling the global optimization of the operations and processes of a production system while, at the same time, supporting its accommodation to the operational spike easily and with reduced impact on production. The present work implements a Cloud Manufacturing infrastructure for achieving the resource/service value-added i.e. to facilitate the creation of services that are the composition of currently available atomic services. In this context, manufacturing resource virtualization (i.e. formalization of resources capabilities into services accessible inside and outside the enterprise) and semantic representation/description are the pillars for achieving resource service composition. In conclusion, the present work aims to act on the manufacturing resource layer where physical resources and shop floor capabilities are going to be provided to the user as a SaaS (Software as a Service) and/or IaaS (Infrastructure as a Service).
Resumo:
Unilever Food Solutions new digital CRM1 Platform - What is the combination of tools, processes and content that will help Unilever Food Solutions grow his business? Unilever Food Solutions (UFS) intend to create a new online platform to enable it to communicate with segments of the markets, which have previously been too difficult to reach. Specifically targeted at Chefs and other food professionals, the aim is to create an interactive website, which delivers value to its intended users by providing a variety of relevant content and functions, while simultaneously opening up a potential transactional channel to those same users.
Resumo:
This paper presents a new approach of pre-defined profiles, based in different voltage and current values, to control the charging and discharging processes of batteries in order to assess their performance. This new approach was implemented in a prototype that was specially developed for such purpose. This prototype is a smart power electronics platform that allows to perform batteries analysis and to control the charging and discharging processes through a web application using pre-defined profiles. This platform was developed aiming to test different batteries technologies. Considering the relevance of the energy storage area based in batteries, especially for the batteries applied to electric mobility systems, this platform allows to perform controlled tests to the batteries, in order to analyze the batteries performance under different scenarios of operation. Besides the results obtained with the batteries, this work also intends to produce results that can contribute to an involvement in the strengthening of the Internet-of-Things.
Resumo:
Business Intelligence (BI) can be seen as a method that gathers information and data from information systems in order to help companies to be more accurate in their decision-making process. Traditionally BI systems were associated with the use of Data Warehouses (DW). The prime purpose of DW is to serve as a repository that stores all the relevant information required for making the correct decision. The necessity to integrate streaming data became crucial with the need to improve the efficiency and effectiveness of the decision process. In primary and secondary education, there is a lack of BI solutions. Due to the schools reality the main purpose of this study is to provide a Pervasive BI solution able to monitoring the schools and student data anywhere and anytime in real-time as well as disseminating the information through ubiquitous devices. The first task consisted in gathering data regarding the different choices made by the student since his enrolment in a certain school year until the end of it. Thereafter a dimensional model was developed in order to be possible building a BI platform. This paper presents the dimensional model, a set of pre-defined indicators, the Pervasive Business Intelligence characteristics and the prototype designed. The main contribution of this study was to offer to the schools a tool that could help them to make accurate decisions in real-time. Data dissemination was achieved through a localized application that can be accessed anywhere and anytime.
Resumo:
Poly(vinylidene fluoride-trifluoroethylene)/NaY zeolite composite membranes were prepared by solvent casting and evaluated as a suitable drug release platform through the evaluation of loading and release of ibuprofen. The membranes were characterized at the morphological, structural and mechanical levels. The 1H-NMR spectra indicate that only the membranes with 16 and 32 % of NaY were useful for IBU encapsulation and the drug release was followed by UV-Vis spectroscopy. The release profile is independent of the zeolite content and can be described by the Korsmeyer-Peppas model. The membrane with 32 % zeolite content releases more than double IBU amount when compared with the membrane with 16 % showing that zeolite content allows tailoring membrane drug release content for specific applications. The drug release platform developed in this work is suitable for other drugs and applications.
Resumo:
The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.
Resumo:
[Exert] Since the discovery that polyacetylene could be doped to the metallic state more than 3 decades ago, an ever-growing body of a multidisciplinary approach to material design, synthesis, and system integration has been evidenced. The present chapter will primarily review the emerging field of intrinsically conducting polymer and conductive polymer blends, with polyaniline and polypyrrole as the major representatives of conducting polymers. This survey will also address some of the potential areas for applications of such conductive polymer blends. Also, current results concerning the chemical polymerization of conducting polymers on bacterial nanocellulose (BNC) will be presented, including brief remarks on the rationale for the use of conductive BNC blends. This will be followed by a discussion on their properties and potential applications (...).
Resumo:
FUNDAMENTO: O benefício clínico de intervenção coronária percutânea (ICP) para lesões coronárias longas é incerto; além disso, foram levantadas dúvidas questões sobre a sua segurança. OBJETIVO: Avaliar os preditores de eventos cardíacos adversos maiores (ECAM) associados à ICP utilizando Full Metal Jacket (FMJ), definido como a sobreposição de stents farmacológicos (SF) medindo >60 mm de comprimento, para lesões muito longas. MÉTODOS: Foram incluídos 136 pacientes consecutivos com lesões coronárias longas, requerendo FMJ em nosso cadastro de centro único. O desfecho primário incluiu a ocorrência combinada de todas as causas de morte, infarto do miocárdio (IM) e revascularização do vaso alvo (RVA). Variáveis demográficas, clínicas, angiográficas e de procedimento foram avaliadas por meio de análise de regressão de Cox para determinar os preditores independentes de desfecho. RESULTADOS: O comprimento médio do stent por lesão foi de 73,2 ± 12,3 mm e o diâmetro médio do vaso de referência foi de 2,9 ± 0,6 mm. O sucesso angiográfico foi de 96,3%. A ausência de ECAM foi de 94,9% em 30 dias e 85,3% em um ano. No acompanhamento de um ano, a taxa de mortalidade por todas as causas foi de 3,7% (1,5% por mortes cardíacas), a taxa de IM foi de 3,7%, e a incidência de trombose de stent (TS) definitiva ou provável foi de 2,9%. O gênero feminino [risco relativo (RR), 4,40; intervalo de confiança de 95% (IC), 1,81-10,66, p = 0,001) e ICP de artéria coronária não direita (RR, 3,49; p = 0,006; IC 95%, 1,42-8,59) foram preditores independentes de ECAM em um ano. A ausência de eventos adversos em um ano foi maior em pacientes com angina estável submetidos à ICP (RR, 0,33; IC 95% 0,13-0,80, p = 0,014). CONCLUSÕES: A ICP utilizando FMJ com SF para lesões muito longas foi eficaz, mas associada a uma alta taxa de TS em acompanhamento de um ano. No entanto, a taxa de mortalidade cardíaca, IM não relacionado a procedimento, e ECAM foi relativamente baixa. ICP de vaso coronário alvo, apresentação clínica, e gênero feminino são novos fatores clínicos contemporâneos que parecem apresentar efeitos adversos sobre o resultado da ICP utilizando FMJ para lesões longas.