964 resultados para Irrigation canals and flumes
Resumo:
This paper presents a case report of a left mandibular second premolar with three canals and three different apical foramina. A 39-year-old male patient presented to our clinic with pain in the mandibular left second premolar. Initially, pain was caused by cold stimulus and later was spontaneously. The intraoral clinical examination revealed a fractured amalgam restoration with occlusal caries. Percussion and cold (Endo-Frost) tests were positive. The radiographic examination showed the presence of two roots. The probable diagnosis was an acute pulpitis. After access cavity, it was observed remaining roof of the pulp chamber and mild bleeding in the tooth lingual area, indicating the possible presence of a third canal. The endodontic treatment was completed in a single session using Root ZX apex locator and K3 NiTi rotary system with surgical diameter corresponding to a .02/45 file in the three canals and irrigation with 1% sodium hypochlorite. The canals were obtured with gutta-percha cones and Sealer 26 using the lateral condensation technique. After 1 year of follow-up, the tooth was asymptomatic and periapical repair was observed radiographically. Internal alterations should be considered during the endodontic treatment of mandibular second premolars. The correct diagnosis of these alterations by the analysis of preoperative radiographs can help the location of two or more canals, thereby avoiding root therapy failure.
Resumo:
This study aimed to evaluate the influence of irrigation needle gauge and design, and the final root canal diameter on the apical cleaning efficacy. Twelve human mandibular incisors were used. At different stages of root canal widening (sizes 20, 30 and 40 K-files), root canals were filled with radiopaque contrast medium. Four different needles were evaluated: 23G with side opening, 22G with apical opening, 30G with side opening and 30G with apical opening. Irrigation was carried out with 2 mL distilled water. The same tooth was radiographed with a digital system several times to assess the four types of needle in those three stages of canal widening. Pre-irrigation (canals filled with contrast) and post-irrigation (canals with remaining contrast) images were submitted to digital subtraction using the Adobe Photoshop CS4 program. Pre-irrigation (filled with contrast) and subtracted (cleaned by irrigation) areas were outlined by a trained and blinded operator using the Image Tool 3.0 software. Their ratio was calculated to express the percentage of apical cleaning in each stage of canal widening (sizes 20, 30 and 40 K-files) with each of the four needles. Data obtained were subjected to one-way ANOVA and Tukey's tests. The 30G needles with side and apical opening promoted better apical cleaning at all stages of root canal widening (p<0.05). In conclusion, smaller diameter needles were more efficacious in cleaning the apical third of the root canals, regardless of their design.
Resumo:
Dogs' teeth with apical periodontitis were treated endodontically, Dakin's solution being used in an experimental group as the irrigation solution, and camphorated paramonochlorophenol as an intracanal dressing. For a second group of teeth, the irrigation solution used was physiologic saline, dry cotton only being placed into the pulpal chamber to take the place of an intracanal dressing. In a second visit, overinstrumentation and a new application of the same kind of dressing were performed, the root canals being then filled with gutta-percha cones and zinc oxide-eugenol cement. Other specimens were treated, in one visit, where physiologic saline or Dakin's solution were the irrigation solutions. The animals were sacrificed 6 months after the obturation of the root canals. Histologic exams showed better results for the experimental group where Dakin's solution and camphorated paramonochlorophenol had been used, with signs of repair characterized by newly formed cementum and bone tissue, as well as a marked reduction in size of the periapical lesions. No differences were seen in the results with physiologic saline or Dakin's solution as irrigants.
Resumo:
The main goal of this paper is to expose and validate a methodology to design efficient automatic controllers for irrigation canals, based on the Saint-Venant model. This model-based methodology enables to design controllers at the design stage (when the canal is not already built). The methodology is applied on an experimental canal located in Portugal. First the full nonlinear PDE model is calibrated, using a single steady-state experiment. The model is then linearized around a functioning point, in order to design linear PI controllers. Two classical control strategies are tested (local upstream control and distant downstream control) and compared on the canal. The experimental results show the effectiveness of the model.
Resumo:
Irrigation canals are complex hydraulic systems difficult to control. Many models and control strategies have already been developed using linear control theory. In the present study, a PI controller is developed and implemented in a brand new prototype canal and its features evaluated experimentally. The base model relies on the linearized Saint-Venant equations which is compared with a reservoir model to check its accuracy. This technique will prove its capability and versatility in tuning properly a controller for this kind of systems.
Resumo:
The development and maintenance of the sealing of the root canal system is the key to the success of root canal treatment. The resin-based adhesive material has the potential to reduce the microleakage of the root canal because of its adhesive properties and penetration into dentinal walls. Moreover, the irrigation protocols may have an influence on the adhesiveness of resin-based sealers to root dentin. The objective of the present study was to evaluate the effect of different irrigant protocols on coronal bacterial microleakage of gutta-percha/AH Plus and Resilon/Real Seal Self-etch systems. One hundred ninety pre-molars were used. The teeth were divided into 18 experimental groups according to the irrigation protocols and filling materials used. The protocols used were: distilled water; sodium hypochlorite (NaOCl)+eDTA; NaOCl+H3PO4; NaOCl+eDTA+chlorhexidine (CHX); NaOCl+H3PO4+CHX; CHX+eDTA; CHX+ H3PO4; CHX+eDTA+CHX and CHX+H3PO4+CHX. Gutta-percha/AH Plus or Resilon/Real Seal Se were used as root-filling materials. The coronal microleakage was evaluated for 90 days against Enterococcus faecalis. Data were statistically analyzed using Kaplan-Meier survival test, Kruskal-Wallis and Mann-Whitney tests. No significant difference was verified in the groups using chlorhexidine or sodium hypochlorite during the chemo-mechanical preparation followed by eDTA or phosphoric acid for smear layer removal. The same results were found for filling materials. However, the statistical analyses revealed that a final flush with 2% chlorhexidine reduced significantly the coronal microleakage. A final flush with 2% chlorhexidine after smear layer removal reduces coronal microleakage of teeth filled with gutta-percha/AH Plus or Resilon/Real Seal SE.
Resumo:
The increased use of trickle or drip irrigation is seen as one way of helping to improve the sustainability of irrigation systems around the world. However, soil water and solute transport properties and soil profile characteristics are often not adequately incorporated in the design and management of trickle systems. In this paper, we describe results of a simulation study designed to highlight the impacts of soil properties on water and solute transport from buried trickle emitters. The analysis addresses the influence of soil hydraulic properties, soil layering, trickle discharge rate, irrigation frequency, and timing of nutrient application on wetting patterns and solute distribution. We show that (1) trickle irrigation can improve plant water availability in medium and low permeability fine-textured soils, providing that design and management are adapted to account for their soil hydraulic properties, (2) in highly permeable coarse-textured soils, water and nutrients move quickly downwards from the emitter, making it difficult to wet the near surface zone if emitters are buried too deep, and (3) changing the fertigation strategy for highly permeable coarse-textured soils to apply nutrients at the beginning of an irrigation cycle can maintain larger amounts of nutrient near to and above the emitter, thereby making them less susceptible to leaching losses. The results demonstrate the need to account for differences in soil hydraulic properties and solute transport when designing irrigation and fertigation management strategies. Failure to do this will result in inefficient systems and lost opportunities for reducing the negative environmental impacts of irrigation.
Resumo:
Objective. In this study, presence of dentin infection in root canals, obturated with 4 techniques submitted to the bacterial leakage test, was evaluated using histologic methods. Study design. The canals of palatal roots of 160 molars were instrumented and divided into different groups, according to the obturation technique used (lateral condensation, MicroSeal system, Touch `n Heat + Ultrafil, and Tagger`s hybrid technique) and extent of the remaining obturation material (5 mm and 10 mm). Ten additional roots were used as control samples. The roots were sterilized in ethylene oxide and mounted on a device for evaluation of bacterial leakage using the bacteria Enterococcus faecalis for 120 days. After the leakage test, roots were microscopically analyzed for the presence of dentin infection in the root canals and dentinal tubules. Results. A total of 154 specimens were analyzed using both methodologies in the experimental groups; 50 root canals (32.4%) showed bacterial leakage at the end of the experimental period, and 118 (76.6%) showed the presence of bacteria in the root canals using the histologic criteria. The lateral condensation technique allowed lower penetration of bacteria in the root canals and dentinal tubules, followed by Touch `n Heat + Ultrafil, MicroSeal, and Tagger`s hybrid technique, which allowed significantly greater penetration of bacteria. Root canals with 10 mm of remaining obturation material presented similar bacterial penetration as root canals with 5 mm. Conclusions. Even when an adequate seal of the apical foramen was shown by the absence of turbidity in the bacterial leakage test, E. faecalis dentin infection was present in a high percentage of the root canals after 120 days of root filling exposure to the bacteria. Tagger`s hybrid technique presented greater quantity of bacteria in histologic sections than root canals obturated with the other techniques. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 788-794)
Resumo:
A relation between a rice irrigation system and mosquito breeding was established in a study undertaken at the Ribeira Valley Experimental Station, from January through December 1992. Flooding favoured Anopheles (Nyssorhynchus) and Culex (Melanoconion) species, while empty paddies condition were propitious to Aedes scapularis and Culex (Culex) species. Compared with a more primitive area of the same region, several species showed high a degree of adaptation to the anthropic environment. Among them, Anopheles albitarsis, a potential malaria vector that breeds in the irrigation system, has shown immature stage production thirteen times higher than at the natural breeding sites. In addition, Ae. scapularis, An. oswaldoi, Cx. bastagarius, and Cx. chidesteri presented high levels of synanthropy.
Resumo:
Irrigation schemes and dams have posed a great concern on public health systems of several countries, mainly in the tropics. The focus of the present review is to elucidate the different ways how these human interventions may have an effect on population dynamics of anopheline mosquitoes and hence, how local malaria transmission patterns may be changed. We discuss different studies within the three main tropical and sub-tropical regions (namely Africa, Asia and the Pacific and the Americas). Factors such as pre-human impact malaria epidemiological patterns, control measures, demographic movements, human behaviour and local Anopheles bionomics would determine if the implementation of an irrigation scheme or a dam will have negative effects on human health. Some examples of successful implementation of control measures in such settings are presented. The use of Geographic Information System as a powerful tool to assist on the study and control of malaria in these scenarios is also highlighted.
Resumo:
This paper examines the distribution and infection of Biomphalaria glabrata with Schistosoma mansoni in all aquatic snail habitats in a rural area in the state of Minas Gerais, Brazil, in relation to physico/biotic and behavioral factors. Snail and environmental surveys were carried out semi-annually between July 2001 and November 2002 at 106 sites. Collected snails were examined in the laboratory for infection. B. glabrata densities were highest in overflow ponds, irrigation ponds, springs, canals and wells, and lowest in fishponds and water tanks. Snail densities were higher during the hot, rainy season except for streams and canals and were statistically associated with the presence of fish, pollution, and vegetation density. Tilapia fish and an unidentified Diptera larva were found to be predators of B. glabrata but ducks were not. Twenty-four of the 25 infected snails were collected in 2001(1.4% infection rate) and only one in 2002, after mass chemotherapy. The occurrence of B. glabrata in all 11 snail habitats both at and away from water contact sites studied indicates widespread risk of human infection in the study area. In spite of the strong association between B. glabrata and tilapia in fishponds we do not recommend its use in schistosomiasis control for ecological reasons and its relative inefficiency in streams and dams.
Resumo:
The aim of our survey was to assess the effect of irrigation water of the microbiological quality on the production chain of lettuce in the Dakar area. Microbiological analysis showed that 35% of irrigation water was contaminated by Salmonella spp. between the two water-types used for irrigation (groundwater and wastewater), no significant difference (p>0.05) in their degree of contamination was found. The incidence of different types of irrigation water on the contamination rate of lettuces from the farm (Pikine and Patte d'Oie) was not different either (p>0.05). However, the contamination rate of lettuce from markets of Dalifort and Grand-Yoff that were supplied by the area of Patte d'Oie was greater than those of Sham and Zinc supplied by Pikine (p<0.05). Comparison of serotypes of Salmonella isolated from irrigation water and lettuce showed that irrigation water may affect the microbiological quality of lettuce. Manures, frequently used as organic amendment in cultivating lettuce are another potential source of contamination. These results showed that lettuce may constitute effective vectors for the transmission of pathogens to consumers. Extensive treatment of the used wastewater and/or composting of manure could considerably reduce these risks.
Resumo:
Soils under natural conditions have heavy metals in variable concentrations and there may be an increase in these elements as a result of the agricultural practices adopted. Transport of heavy metals in soil mainly occurs in forms dissolved in the soil solution or associated with solid particles, water being their main means of transport. In this context, the aim of this study was to evaluate the heavy metal and micronutrient content in the soil and in the grapevine plant and fruit under different irrigation strategies. The experiment was carried out in Petrolina, PE, Brazil. The treatments consisted of three irrigation strategies: full irrigation (FI), regulated deficit irrigation (RDI), and deficit irrigation (DI). During the period of grape maturation, soil samples were collected at the depths of 0-10, 10-20, 20-40, 40-60, and 60-80 cm. In addition, leaves were collected at the time of ripening of the bunches, and berries were collected at harvest. Thus, the heavy metal and micronutrient contents were determined in the soil, leaves, and berries. The heavy metal and micronutrient contents in the soil showed a stochastic pattern in relation to the different irrigation strategies. The different irrigation strategies did not affect the heavy metal and micronutrient contents in the vine leaves, and they were below the contents considered toxic to the plant. In contrast, the greater availability of water in the FI treatment favored a greater Cu content in the grape, which may be a risk to vines, causing instability and turbidity. Thus, adoption of deficit irrigation is recommended so as to avoid compromising the stability of tropical wines of the Brazilian Northeast.
Resumo:
ABSTRACT Nitrogen losses by ammonia (NH3) volatilization can be reduced by appropriate irrigation management or by alternative N sources, replacing urea. The objective of this study was to evaluate the efficiency of irrigation management and N source combinations in decreasing NH3 volatilization from an Argissolo Vermelho Distrófico típico cultivated for 28 years with black oat (Avena strigosa) and maize (Zea mays), under no-tillage in the region of Depressão Central, Rio Grande do Sul, Brazil. The experiment was arranged in a randomized block design with split plots with three replications, where the main plots consisted of irrigation systems: no irrigation; irrigation immediately before and irrigation immediately after fertilization. The subplots were treated with different N sources: urea, urea with urease inhibitor and slow-release fertilizer, at an N rate of 180 kg ha-1, broadcast over maize, plus a control treatment without N fertilization. Ammonia volatilization was assessed using semi-open static collectors for 1, 2, 4, 6, and 10 days after N fertilization. In general, more than 90 % of total NH3-N losses occurred until three days after N fertilization, with peaks up to 15.4 kg ha-1 d-1. The irrigation was efficient to reduce NH3 losses only when applied after N fertilization. However, reductions varied according to the N fertilizer, and were higher for urea (67 %) and slightly lower for urea with urease inhibitor (50 %) and slow-release fertilizer (40 %), compared with the mean of the treatments without irrigation and irrigation before fertilization. The use of urea with urease inhibitor instead of urea was only promising under volatilization-favorable conditions (no irrigation or irrigation before N fertilization). Compared to urea, slow-release fertilizer did not reduce ammonia volatilization in any of the rainfed or irrigated treatments.
Resumo:
This study aimed to test controlled levels of water deficiency in soil in mango trees, under microsprinkling irrigation, in semi-arid conditions, and to evaluate its effect in the productivity and fruits quality. The deficits were applied in the phases I, II and III of growth of the fruit, during the productive cycles of the mango tree in 2006 and 2007. The experiment in both cases was arranged in an entirely random design with 10 treatments and 3 repetitions, in the year I, and with 8 treatments and 3 repetitions in the year II. The values of soil water potential, of the treatments submitted to regulated deficit irrigation (RDI), were placed in the range of 0 to -0.011 MPa, showing that the soil humidity varied between the saturation and the field capacity, not characterizing deficit water condition. The average values of stem water potential (Ψstem) varied between -0.90 and -1.74 MPa, evidencing significant effect (p <0.05) just for T1 (without irrigation), T7 and T8 (RDI with 30% of the ETc in the phases II and III, respectively). Through the variance analysis, significant differences were not verified among productivity, number of fruits per plant and size of the fruit, in none of the experiments, what indicates the possibility of reduction of the water use in the irrigation of the mango tree without significant losses of productivity and fruit quality.