947 resultados para Inversão (Geofísica)
Resumo:
The present work has the main goal to study the modeling and simulation of a biphasic separator with induced phase inversion, the MDIF, with the utilization of the finite differences method for the resolution of the partial differencial equations which describe the transport of contaminant s mass fraction inside the equipment s settling chamber. With this aim, was developed the deterministic differential model AMADDA, wich was admensionalizated and then semidiscretizated with the method of lines. The integration of the resultant system of ordinary differential equations was realized by means of a modified algorithm of the Adam-Bashfort- Moulton method, and the sthocastic optimization routine of Basin-Hopping was used in the model s parameter estimation procedure . With the aim to establish a comparative referential for the results obtained with the model AMADDA, were used experimental data presented in previous works of the MDIF s research group. The experimental data and those obtained with the model was assessed regarding its normality by means of the Shapiro-Wilk s test, and validated against the experimental results with the Student s t test and the Kruskal-Wallis s test, depending on the result. The results showed satisfactory performance of the model AMADDA in the evaluation of the MDIF s separation efficiency, being possible to determinate that at 1% significance level the calculated results are equivalent to those determinated experimentally in the reference works
Resumo:
The aim of this work is to use a new technology in the treatment of produced wastewaters from oil industry. An unit for treat produced waters called UTMDIF, was designed, installed and operated in an industrial plant for treatment of effluents from oil industry. This unit operates by means of the method of separation of phase inversion and can become a promising alternative to solve the problem of oil/water separation. This method constitutes the basis of the working of a new design of mixersettler of vertical configuration which occupies small surface area. The last characteristic becomes specially important when there is limitation on the lay-out of the plant, for example, over maritime platforms to explore oil. This equipment in a semi-industrial scale treats produced wastewaters contaminated with oil at low concentrations (ranging from 30 to 150 mg/L) and throughputs of 320 m3/d (47,4 m3 m-2 h-1). Good results were obtained in oil/water separation which leads to the necessary specification to discharge those wastewaters. Besides, the non dependence of the efficiency of separation in spite of the salinity of the medium becomes the equipment an attractive new technology to treat wastewaters containing oil at low concentrations
Resumo:
OBJETIVO: caracterizar o desempenho de escolares da 1ª série na bateria de identificação de erros de reversão e inversão na escrita. MÉTODOS: participaram deste estudo 30 escolares de 1ª série de ensino público do município da cidade de Marília-SP, de ambos os gêneros, na faixa etária de 7 anos a 7 anos e 11 meses de idade. Como procedimento foi realizada a adaptação brasileira da bateria de identificação dos erros de reversão e inversão na escrita. Esta bateria é composta por 3 testes: teste de desempenho contínuo, teste de memória de curto prazo e teste de controle de escrita. Cada teste é composto por subtestes que visam identificar a capacidade dos escolares em identificar as inversões e reversões de letras e números isolados e letras e números em sequências. RESULTADOS: os resultados revelaram que os escolares da 1ª série apresentaram desempenho superior para identificação de reversão e inversão de letras dentro de palavras do que isoladamente, identificação da reversão para letras e números com desempenho superior se comparado a inversão de letras na palavra. Além disso, os escolares deste estudo apresentaram menor tempo para identificação de reversão e inversão de letras e números isolados do que em sequência. CONCLUSÃO: a Bateria adaptada para este estudo permitiu conhecer o perfil dos escolares de 1ª série quanto a identificação dos erros de inversão e reversão, entretanto, é necessário novas aplicações para verificar a ocorrência de identificação destes erros em populações de diferentes fase de alfabetização.
Resumo:
The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic
Resumo:
Northeastern Brazil is mainly formed by crystalline terrains (around 60% in area). Moreover, this region presents a semi-arid climate so that it is periodically subject to drought seasons. Furthermore, ground water quality extracted fromwells usually presents poor quality because of their high salinity contents. Nevertheless, ground water is still a very important source of water for human and animal consumption in this region. Well sitting in hard rocks terrains in Northeastern Brazil offers a mean success index of aboul 60%, given that a successful siting is defined by a well producing at least 0.5 m³/h. This low index reveals lack of knowledga about the true conditions of storage and percolation of ground water in crystalline rocks. Two models for structures storing and producing ground water in crystalline rocks in Northeastem Brazil have been proposed in the literature. The first model,tradnionally used for well sitting since the sixties are controlled by faults or fractures zones. This model is commonly referred, in Brazilian hydrogeological literature, as the "creek-crack" model (riacho-fenda in Portuguese). Sites appearing to present dense drainage network are preferred for water well siting - particularly at points where the drainages cross-cul each other. Field follow up work is usually based only on geological criteria. The second model is the "eluvio-alluvial through" (calha eluvio-aluvionar in Portuguese); it is also described in the literature but it is not yet incorporated in well sitting practice. This model is based on the hypothesis that reclilinear drainages can also be controlled by the folietion of the rock. Eventually, depending upon the degree of weathering, a through-shaped structure filled with sediments (alluvium and regolith) can be developed which can store and water can be produced from. Using severalfield case studies, this Thesis presents a thorough analysis ofthe two above cited models and proposes a new model. The analysis is based on an integrated methodological approach using geophysics and structural geology. Both land (Resitiviy and Ground Penetrating Radar- GPR) and aerogeophysical (magnetics and frequency domain eletromagnetics) surveys were used. Slructural analysis emphasized neolectonic aspects; in general, itwas found that fractures in the E-W direction are relatively open, as compared to fracturas inthe N-S direction, probably because E-W fractures were opened by the neotectonic stress regime in Northeastern Brazil, which is controlled by E-W compression and N-S extension. The riacho-fenda model is valid where drainages are controlled by fractures. The degree of fracturing and associated weathering dictale the hydrogeological potential of the structure. Field work in structural analogues reveals that subvertical fractures show consistent directions both in outcrop and aerophotograph scales. Geophysical surveys reveal subvertical conductive anomalies associated to the fracture network controlling the drainage; one of the borders of the conductive anomaly usually coincide wih the drainage. An aspect of particular importance to the validation of fracture control are the possible presence of relalively deep conductive anomalies wihoul continuation or propagalion to the surface. The conductive nature of lhe anomaly is due to the presence of wealhered rock and sedirnenls (alluvium and/or regolilh) storing ground waler which occur associated to the fracture network. Magnetic surveys are not very sensisnive to these structures.lf soil or covering sedirnents are resislive (> 100 Ohm.m), GPR can ba used to image precisely lhe fracture network. A major limialion of riacho-fenda model, revealed by GPR images, is associated to the fact thal subhorizontal fractures do play a very important role in connecting the fracture network, besides connect shallow recharge zones to relalively deep subvertical frecture zones. Iffractures play just a secondary control on the drainage, however, r/acho-fenda model may have a very limiled validny; in these cases, large portions oflhe drainage do nol coincide wilh frectures and mosl oflhewells localed in lhe drainage surrounding would resull dry. Usually, a secondary conlrol on lhe drainage by Ihefraclure networkcan be revealed only wilh detailed geophysical survey. The calha elClv1o-aluvlonarmodel is valid where drainages are conlrolled by folialion. The degree 01 wealhering 01 lhe lolialion planes dictales lhe hydrogeological polenlial 01 lhe slruclure. Outcrop analysis reveals Ihal lolialion and drainage direclions are parallel and Ihal no Iraclures, orfraclures wilh diflerent directions 01 lhe drainage direclion occur. Geophysical surveys reveal conduclive anomalies in a slab lorm associaled 10 lhe Ihrough 01 lhe wealhered rock and sedimenls (alluvium and/or regolith). Magnelic surveys can ofler a very good conlrol on lolialion direclion. An importanl aspect 10 validale lolialion conlrol are lhe presence 01 conductive anomalies showing shallow and deep portions area which are linked. Illhere is an exlensive soil cover, r/acho-fenda and calha eIClv1o-aluv/onar conlrols can be easily misinlerpreled in lhe absence 01 geophysical conlrol. Certainly, Ihis lacl could explain at leasl a part of lhe failure index in well sitting. The model wealhering sack (bolsllo de Intempertsmo in Portuguese) is proposed to explain cases where a very inlensive wealhering occur over lhe crystalline rock so Ihal a secondary inlerslilial porosity is crealed. The waler is Ihen stored in lhe porous of lhe regolilh in a similar mannerlo sedimentary rocks. A possible example ofthis model was delecled by using land geophysical survey where a relalivelyvery deep isolaled conduclive anomaly, in a slab form, was delected. Iflhis structure does store ground waler, certainly Ihere must be a link 01 lhe deep slructure wilh lhe surface in orderlo provide walerfeeding. This model mighl explain anomalous waler yields as greal as 50 m³/h Ihalsomelimescan occur in crystalline rocks in Northeaslern Brazil
Resumo:
This thesis describes the general behavior of the northern shore of the State of Rio Grande do Norte relating beach profile morphology with hydrodynamic and sedimentological parameters. The Macau and Serra Oil Field are inserted on this area and are under accelerated coastal erosion. At these oil fields are installed oil wells from PETROBRAS, nowadays located directly in the shoreline, under constant attacks of coastal processes (e.g. waves, tides and currents), which promote an intense morphodynamic variability of this sandy coast. The area was monitored for 24 months in three different stations (P01, P02 and P03). The methodology applied involved current techniques of beach profiles, hydrodynamical processes, remote sensing and geophysics. A synthesis of results obtained through the use of different time scales (monthly, lunar cycle, seasonal, annual) from a coastal dynamics study is presented. The average wind direction corresponded to 77ºAz (NE). The steepness of the berm and of the shoreface, as well as coastal current direction, do not present major changes, with an average of 36º for the steepness of the berm, 15º for the shoreface and 15º for the coastal current direction. This data set allows us to infer that the months of larger coastal erosion were November/2000 and April/2001, because of the largest wave parameter during this time. The months of worse coastal erosion in this area are related with the increasing wavy energy. This in turn, seems to be related to seasonal climatic variations, with the wave energy and tide currents speed increasing during months of minor precipitations (June to January). The months of worse coastal erosion were September and November, when the largest wave parameters and speed currents are measured in the area. Since these months are included on the period of minor precipitations, we related the coastal erosion to seasonal climatic variations. The results obtained during these 24 months of monitoring confirms a situation of accentuated erosion, mainly in Profile 03 (Barra do Corta-Cachorro), where the wave height, period, and coastal current speed are always larger than the values found in Profile 02 (Macau5). Probably these values are more expressive in Profile 03, because it does not present any natural structure of protection against the wave impacts, as the barrier island located at Ponta do Tubarão, or the sand banks in front of Macau5. The transport of the sediments occurs from East to West, and the sand accumulation is more pronounced on Profile 03 intertidal zone, where there are embrionary dunes in dryer months. The tidal currents speed, on the other hand, is more accentuated in the Macau5 area (Profile 02). At Ponta do Tubarão, the tidal currents presented a preferential direction for NE, at times of flood, currents and for NW, at times of ebb current; at Barra do Corta-Cachorro the direction of the currents were predominantly for NW, independent of the tide phase, coinciding with the preferential direction of the longshore current. This currents inversion at Ponta do Tubarão is attributed to the presence of the Ponta do Tubarão island barrier and by the communication channel of the lagoon with the sea. The tide currents are better observed in protected areas, as in the Ponta do Tubarão, when they present inversion in their direction accordingly to the flood and ebb tide. In open areas, as in Barra do Corta-Cachorro, the tide currents are overprinted by the longshore currents. Sediment analysis does not show important modifications in grain size related to seasonality (dry- and rainy seasons). On the foreshore and backshore zones, the sediments vary from fine to medium sand, while in the shoreface they very from fine to very sands. The grains are mostly spheres, varying from sub rounded to sub angled. Quartz is the main component alongside Feldspat and heavy minerals as accessory components. Biogenic content is also present and mainly represented by mollusks fragments. The calculated sediment transport show values around 100 m3/day. The morphodynamic studies indicated that this is a reflexive area from October to April, and intermediate from May to September. The Relative Tide Range-RTR for this area is 4 < RTR < 15, and so classified in the mixed wave-tide group. Having this exposed we can affirm that the more active natural factors in this area are the currents, followed by the tides and the winds. The anthropic factors are exclusively local and punctual (Macau and Serra Oil Field). Taking in account the economic importance of the area, as well as the intensity of coastal processes acting on this shore, it is important a continuity of the monthly environmental monitoring looking for variations on longer-period cycles. These data have been stored on the geo-referenced database of the projects MARPETRO and PETRORISCO (REDE 05), aiming to model the coastal and sea environment, susceptible to oil spills and their derivatives
Resumo:
This thesis deals with the sedimentological/stratigraphic and structural evolution of the sedimentary rocks that occur in the NW continental border of the Potiguar Basin. These rocks are well exposed along coastal cliffs between the localities of Lagoa do Mato and Icapuí, Ceará State (NE Brazil). The sedimentological/stratigraphic study involved, at the outcrop scale, detailed facies descriptions, profile mapping of the vertical succession of different beds, and columnar sections displaying inferred lateral relationships. The approach was complemented by granulometric and petrographic analyses, including the characterization of heavy mineral assemblages. The data set allowed to recognize two kinds of lithological units, a carbonate one of very restricted occurrence at the base of the cliffs, and three younger, distinct siliciclastic units, that predominate along the cliffs, in vertical and lateral extent. The carbonate rocks were correlated to the late Cretaceous Jandaíra Formation, which is covered by the siliciclastic Barreiras Formation. The Barreiras Formation occurs in two distinct structural settings, the usual one with nondeformed, subhorizontal strata, or as tilted beds, affected by strong deformation. Two lithofacies were recognized, vertically arranged or in fault contacts. The lower facies is characterized by silty-argillaceous sandstones with low-angle cross bedding; the upper facies comprises medium to coarse grained sandstones, with conglomeratic layers. The Tibau Formation (medium to coarse-grained sandstones with argillite intercalations) occurs at the NW side of the studied area, laterally interlayered with the Barreiras Formation. Eolic sediments correlated to the Potengi Formation overly the former units, either displaying an angular unconformity, or simply an erosional contact (stratigraphic unconformity). Outstanding structural features, identified in the Barreiras Formation, led to characterize a neocenozoic stress field, which generated faults and folds and/or reactivated older structures in the subjacent late cretaceous (to paleogene, in the offshore basin) section. The structures recognized in the Barreiras Formation comprise two distinct assemblages, namely a main extensional deformation between the localities of Ponta Grossa and Redonda, and a contractional style (succeeded by oblique extensional structures) at Vila Nova. In the first case, the structural assemblage is dominated by N-S (N±20°Az) steep to gently-dipping extensional faults, displaying a domino-style or listric geometry with associated roll-over structures. This deformation pattern is explained by an E-W/WNW extension, contemporaneous with deposition of the upper facies of the Barreiras Formation, during the time interval Miocene to Pleistocene. Strong rotation of blocks and faults generated low-angle distensional faults and, locally, subvertical bedding, allowing to estimate very high strain states, with extension estimates varying between 40% up to 200%. Numerous detachment zones, parallel to bedding, help to acommodate this intense deformation. The detachment surfaces and a large number of faults display mesoscopic features analoguous to the ones of ductile shear zones, with development of S-C fabrics, shear bands, sigmoidal clasts and others, pointing to a hydroplastic deformation regime in these cases. Local occurrences of the Jandaíra limestone are controled by extensional faults that exhume the pre-Barreiras section, including an earlier event with N-S extension. Finally, WNWtrending extensional shear zones and faults are compatible with the Holocene stress field along the present continental margin. In the Vila Nova region, close to Icapuí, gentle normal folds with fold hinges shallowly pluging to SSW affect the lower facies of the Barreiras Formation, displaying an incipient dissolution cleavage associated with an extension lineation at high rake (a S>L fabric). Deposition of the upper facies siliciclastics is controlled by pull-apart graben structures, bordered by N-NE-trending sinistral-normal shear zones and faults, characterizing an structural inversion. Microstructures are compatible with tectonic deformation of the sedimentary pile, burried at shallow depths. The observed features point to high pore fluid pressures during deformation of the sediments, producing hydroplastic structures through mechanisms of granular flow. Such structures are overprinted by microfractures and microfaults (an essentially brittle regime), tracking the change to microfracturing and frictional shear mechanisms accompanying progressive dewatering and sediment lithification. Correlation of the structures observed at the surface with those present at depth was tested through geophysical data (Ground Penetrating Radar, seismics and a magnetic map). EW and NE-trending lineaments are observed in the magnetic map. The seismic sections display several examples of positive flower structures which affect the base of the cretaceous sediments; at higher stratigraphic levels, normal components/slips are compatible with the negative structural inversion characterized at the surface. Such correlations assisted in proposing a structural model compatible with the regional tectonic framework. The strong neogenepleistocene deformation is necessarily propagated in the subsurface, affecting the late cretaceous section (Açu and Jandaíra formations), wich host the hydrocarbon reservoirs in this portion of the Potiguar Basin. The proposed structural model is related to the dextral transcurrent/transform deformation along the Equatorial Margin, associated with transpressive terminations of E-W fault zones, or at their intersections with NE-trending lineaments, such as the Ponta Grossa-Fazenda Belém one (the LPGFB, itself controlled by a Brasiliano-age strike-slip shear zone). In a first step (and possibly during the late Cretaceous to Paleogene), this lineament was activated under a sinistral transpressional regime (antithetic to the main dextral deformation in the E-W zones), giving way to the folds in the lower facies of the Barreiras Formation, as well as the positive flower structures mapped through the seismic sections, at depth. This stage was succeeded (or was penecontemporaneous) by the extensional structures related to a (also sinistral) transtensional movement stage, associated to volcanism (Macau, Messejana) and thermal doming processes during the Neogene-Pleistocene time interval. This structural model has direct implications to hydrocarbon exploration and exploitation activities at this sector of the Potiguar Basin and its offshore continuation. The structure of the reservoirs at depth (Açu Formation sandstones of the post-rift section) may be controlled (or at least, strongly influenced) by the deformation geometry and kinematics characterized at the surface. In addition, the deformation event recognized in the Barreiras Formation has an age close to the one postulated for the oil maturation and migration in the basin, between the Oligocene to the Miocene. In this way, the described structural cenario represents a valid model to understand the conditions of hydrocarbon transport and acummulation through space openings, trap formation and destruction. This model is potentially applicable to the NW region of the Potiguar Basin and other sectors with a similar structural setting, along the brazilian Equatorial Atlantic Margin
Resumo:
Numerous studies have indicated that the Potiguar Basin is affected by Cenozoic tectonics. The reactivation of Cretaceous fault systems affect the post-rift units, witch include Neogene and overlying Quaternary sediments. In this context, the objectives of this thesis are the followings: (1) to characterize the effects of post-rift tectonics in the morphology of Apodi Mossoró-river valley located in the central portion of the Potiguar, (2) to characterize the drainage of the Apodi Mossoró river valley and investigate the behavior of their channels across active faults, and (3) to propose a geologic-geomorphological evolutionary model for the study area. This study used a geological and geomorphological mapping of the central part of the basin, with emphasis on the Quaternary record, luminescence dating of sediments, and geoelectric profiles of the area. The results reveal by maps of structural lineaments and drainage channels of the rivers form valleys that are affected by faults and folds. In Apodi-Mossoró valley, anomalies of channel morphology are associated with the deformation of the post-rift basin. These anomalies show the reactivation of major fault systems in the Potiguar Basin in Cenozoic. On a regional scale, can be seen through the vertical electric profiles that the Cenozoic tectonics is responsible for the elevation of a macro dome NE-SE-trending 70-km long and 50km wide and up to 270 above sea level. In this sector, the vertical electric profiles data show that the contact between the Cretaceous and Neogene rise more than 100m. This Is an important feature of inversion data obtained in this work showed that the deposits that cover the macro dome (Serra do Mel) have ages of 119 ka to 43 ka. In the river valley and surrounding areas Apodi-Mossoró ages vary between 319 ka and 2.7 ka. From these data it was possible to establish the correct geochronological posiconamento paleodepósitos of distinguishing them from the fluvial deposits of the Neogene (Barreiras Formation)
Resumo:
This dissertation focuses on rock thermal conductivity and its correlations with petrographic, textural, and geochemical aspects, especially in granite rocks. It aims at demonstrating the relations of these variables in an attempt to enlighten the behavior of thermal effect on rocks. Results can be useful for several applications, such as understanding and conferring regional thermal flow results, predicting the behavior of thermal effect on rocks based upon macroscopic evaluation (texture and mineralogy), in the building construction field in order to provide more precise information on data refinement on thermal properties emphasizing a rocky material thermal conductivity, and especially in the dimension stone industry in order to open a discussion on the use of these variables as a new technological parameter directly related to thermal comfort. Thermal conductivity data were obtained by using Anter Corporation s QuicklineTM -30 a thermal property measuring equipment. Measurements were conducted at temperatures ranging between 25 to 38 OC in samples with 2cm in length and an area of at least 6cm of diameter. As to petrography data, results demonstrated good correlations with quartz and mafics. Linear correlation between mineralogy and thermal conductivity revealed a positive relation of a quartz percentage increase in relation to a thermal conductivity increase and its decrease with mafic minerals increase. As to feldspates (K-feldspate and plagioclase) they show dispersion. Quartz relation gets more evident when compared to sample sets with >20% and <20%. Sets with more than 20% quartz (sienogranites, monzogranites, granodiorites, etc.), exhibit to a great extent conductivity values which vary from 2,5 W/mK and the set with less than 20% (sienites, monzonites, gabbros, diorites, etc.) have an average thermal conductivity below 2,5 W/mK. As to textures it has been verified that rocks considered thick/porphyry demonstrated in general better correlations when compared to rocks considered thin/medium. In the case of quartz, thick rocks/porphyry showed greater correlation factors when compared to the thin/medium ones. As to feldspates (K-feldspate and plagioclase) again there was dispersion. As to mafics, both thick/porphyry and thin/medium showed negative correlations with correlation factor smaller than those obtained in relation to the quartz. As to rocks related to the Streckeisen s QAP diagram (1976), they tend to fall from alcali-feldspates granites to tonalites, and from sienites to gabbros, diorites, etc. Thermal conductivity data correlation with geochemistry confirmed to a great extent mineralogy results. It has been seen that correlation is linear if there is any. Such behavior could be seen especially with the SiO2. In this case similar correlation can be observed with the quartz, that is, thermal conductivity increases as SiO2 is incremented. Another aspect observed is that basic to intermediate rocks presented values always below 2,5 W/mK, a similar behavior to that observed in rocks with quartz <20%. Acid rocks presented values above 2,5 W/mK, a similar behavior to that observed in rocks with quartz >20% (granites). For all the other cases, correlation factors are always low and present opposite behavior to Fe2O3, CaO, MgO, and TiO2. As to Al2O3, K2O, and Na2O results are not conclusive and are statistically disperse. Thermal property knowledge especially thermal conductivity and its application in the building construction field appeared to be very satisfactory for it involves both technological and thermal comfort aspects, which favored in all cases fast, cheap, and precise results. The relation between thermal conductivity and linear thermal dilatation have also shown satisfactory results especially when it comes to the quartz role as a common, determining phase between the two variables. Thermal conductivity studies together with rocky material density can function as an additional tool for choosing materials when considering structural calculation aspects and thermal comfort, for in the dimension stone case there is a small density variation in relation to a thermal conductivity considerable variation
Resumo:
It is presently assumed that the Borborema Province resulted from a complex collisional process associated with the convergent movement of plates, possibly involving amalgamation and accretion of microplates. This process was consolidated at the end of the Brasiliano event. It is investigated the possible limits for the tectonostratigraphic terranes in the northern portion of the province based on an integrated study of geological and gravity data. The study area comprises the portion of the Borborema Province located north of the Patos Lineament, limited by longitudes 33º00 W and 43º29 44"W and latitudes 1º36 S and 8º00 S. A revision of the regional geology allowed to identify areas presenting contrasting geological attributes, possibly representing different terranes whose limits are always shear zones of Brasiliano-age. The Sobral-Pedro II shear zone is the only one undoubtedly presenting geological attributes of sutures zones. The other shear zones are very likely associated with a geodinymic context of accretion, involving oblique collisions (docking), transcurrent and/or transforming sutures, and deep intracrustal shear zones. The gravity data contributed as a tool to identify strong lateral contrasts of density inside the upper crust possibly associated with crustal blocks tectonically juxtaposed. The dominant long wavelength anomaly in the Bouguer anomaly map is an expressive gradient, grossly parallel to the continental margin, caused by density variation across the crust-mantle interface in the transition from the continental crust to the oceanic crust originated by the separation between South America and Africa. Medium to small wavelength anomalies are due to intracrustal heterogeneities such as different Precambrian crustal blocks, Brasiliano-age granites and Mesozoic sedimentary basins. A regional-residual separation of the Bouguer anomaly map was performed in order to enhance in the residual map the effect due to intracrustal heterogeneities. The methodology used for this separation was a robust polinomial fitting. The inversion of residual gravity field resulted in a density contrast map (Δρ), in an equivalent layer that provided more accurated anomalies contours and consolidated the model which the sources of residual anomalies are located in the upper part of the present crust. Based on the coincidence of gravity lineaments in the residual map and Brasiliano shear zones, and using additional geological information, the following shear zones are proposed as limits between terranes: Patos shear zone, Sobral-Pedro II shear zone, Picuí-João Câmara shear zone, Remígio-Pocinhos shear zone, Senador Pompeu shear zone, Tauá shear zone, and Portalegre shear zone. Based on the geological/geophysical information it is attributed a higher level of confidence to the first three proposed limits(Patos, Sobral Pedro II, and Picuí-João Câmara shear zones). From west to east, these shear zones individualize the following terranes: Northwest of Ceará terrane, Central Ceará terrane, Tauá terrane, Orós-Jaguaribe terrane, Seridó terrane, and São José de Campestre terrane. In our study, the Rio Piranhas and Patos terranes are questioned because their previously proposed limits do not present good geological and gravimetric evidences. On the other hand, the previously proposed Cearense terrane is now subdivided into Central Ceará and Tauá terranes. Two residual gravity profiles located in the Seridó belt were interpreted using 2 ½ D direct gravity modeling. The main result of the modeling process is that all anomalies, with the exception of one, can be explained by outcroppring bodies, therefore restricted to the upper part of the present crust
Resumo:
The history match procedure in an oil reservoir is of paramount importance in order to obtain a characterization of the reservoir parameters (statics and dynamics) that implicates in a predict production more perfected. Throughout this process one can find reservoir model parameters which are able to reproduce the behaviour of a real reservoir.Thus, this reservoir model may be used to predict production and can aid the oil file management. During the history match procedure the reservoir model parameters are modified and for every new set of reservoir model parameters found, a fluid flow simulation is performed so that it is possible to evaluate weather or not this new set of parameters reproduces the observations in the actual reservoir. The reservoir is said to be matched when the discrepancies between the model predictions and the observations of the real reservoir are below a certain tolerance. The determination of the model parameters via history matching requires the minimisation of an objective function (difference between the observed and simulated productions according to a chosen norm) in a parameter space populated by many local minima. In other words, more than one set of reservoir model parameters fits the observation. With respect to the non-uniqueness of the solution, the inverse problem associated to history match is ill-posed. In order to reduce this ambiguity, it is necessary to incorporate a priori information and constraints in the model reservoir parameters to be determined. In this dissertation, the regularization of the inverse problem associated to the history match was performed via the introduction of a smoothness constraint in the following parameter: permeability and porosity. This constraint has geological bias of asserting that these two properties smoothly vary in space. In this sense, it is necessary to find the right relative weight of this constrain in the objective function that stabilizes the inversion and yet, introduces minimum bias. A sequential search method called COMPLEX was used to find the reservoir model parameters that best reproduce the observations of a semi-synthetic model. This method does not require the usage of derivatives when searching for the minimum of the objective function. Here, it is shown that the judicious introduction of the smoothness constraint in the objective function formulation reduces the associated ambiguity and introduces minimum bias in the estimates of permeability and porosity of the semi-synthetic reservoir model
Resumo:
The Cumuruxatiba basin is located at the southern coast State of Bahia in northeastern of Brazil. This basin was formed in distensional context, with rifting and subsequent thermal phase during Neocomian to late Cretaceous. At Cenozoic ages, the Abrolhos magmatism occurs in the basin with peaks during the Paleocene and Eocene. In this period, there was a kinematic inversion in the basin represented by folds related to reverse faults. Structural restoration of regional 2D seismic sections revealed that most of the deformation was concentrated at the beginning of the Cenozoic time with the peak at the Lower Eocene. The post-Eocene is marked by a decrease of strain rate to the present. The 3D structural modeling revealed a fold belt (trending EW to NE-SW) accommodating the deformation between the Royal Charlotte and Sulphur Minerva volcanic highs. The volcanic eruptions have caused a differential overburden on the borders of the basin. This acted as the trigger for halokinesis, as demonstrated by physical modeling in literature. Consequently, the deformation tends to be higher in the edges of the basin. The volcanic rocks occur mainly as concordant structures (sills) in the syn-tectonic sediment deposition showing a concomitant deformation. The isopach maps and diagrams of axis orientation of deformation revealed that most of the folds were activated and reactivated at different times during the Cenozoic. The folds exhibit diverse kinematic patterns over time as response to behavior of adjacent volcanic highs. These interpretations allied with information on the petroleum system of the basin are important in mapping the prospects for hydrocarbons
Resumo:
This study presents new stress orientations and magnitudes from the Potiguar basin in the continental margin of Brazil. We analyzed breakout and drilled induced fractures derived from resistivity image logs run in ten oil wells. We also used direct Shmin measurements determined from hydraulic fractures and rock strength laboratory analysis. In addition, we compared these results with 19 earthquake focal mechanisms located in the crystalline basement. We observed that stress directions and magnitudes change across the basin and its basement. In the basin, the SHmax gradient of 20.0 MPa/km and the SHmax/Shmin ratio of 1.154 indicate a normal stress regime from 0.5 to 2.0 km, whereas the SHmax gradient of 24.5MPa/km and the SHmax/Shmin ratio of 1.396 indicate a strike slip stress regime from 2.5 to 4.0 km. The deeper strike-slip stress regime in the basin is similar to the regime in the basement at 1-12 km deep. This stress regime transition is consistent with an incipient tectonic inversion process in the basin. We also noted that the SHmax direction rotates from NW SE in the western part of the Potiguar basin to E W in its central and eastern part, following roughly the shoreline geometry. It indicates that local factors, as density contrast between continental and oceanic crust and sediment loading at the continental shelf influence the stress field. The concentration of fluid pressure in faults of the lowpermeability crystalline basement and its implications to establish a critically stressed fault regime in the basement is also discussed
Resumo:
The 3D gravity modeling of the Potiguar rift basin consisted of a digital processing of gravity and aeromagnetic data, subsidized by the results of Euler deconvolution of gravity and magnetic data and the interpretation of seismic lines and wells descriptions. The gravity database is a compilation of independent geophysical surveys conducted by several universities, research institutions and governmental agencies. The aeromagnetic data are from the Bacia Potiguar and Plataforma Continental do Nordeste projects, obtained from the Brazilian Petroleum Agency (ANP). The solutions of the Euler Deconvolution allowed the analysis of the behavior of the rift main limits. While the integrated interpretation of seismic lines provided the delimitating horizons of the sedimentary formations and the basement top. The integration of these data allowed a 3D gravity modeling of basement topography, allowing the identification of a series of internal structures of the Potiguar rift, as well intra-basement structures without the gravity effect of the rift. The proposed inversion procedure of the gravity data allowed to identify the main structural features of the Potiguar rift, elongated in the NE-SW direction, and its southern and eastern faulted edges, where the sedimentary infill reachs thicknesses up to 5500 m. The southern boundary is marked by the Apodi and Baixa Grande faults. These faults seem to be a single NW-SE oriented fault with a strong bend to NE-SW direction. In addition, the eastern boundary of the rift is conditioned by the NE-SW trending Carnaubais fault system. It was also observed NW-SE oriented faults, which acted as transfer faults to the extensional efforts during the basin formation. In the central part of the residual anomaly map without the gravity effect of the rift stands out a NW-SE trending gravity high, corresponding to the Orós-Jaguaribe belt lithotypes. We also observe a gravity maximum parallel to the Carnaubais fault system. This anomaly is aligned to the eastern limit of the rift and reflects the contact of different crustal blocks, limited by the eastern ward counterpart of the Portalegre Shear Zone
Resumo:
The Borborema Province, Northeastern Brazil, had its internal structure investigated by different geophysical methods like gravity, magnetics and seismics. Additionally, many geological studies were also carried out to define the structural domains of this province. Despite the plethora of studies, there are still many important open aspects about its evolution. Here, we study the velocity structure of S-wave in the crust using dispersion of surface waves. The dispersion of surface waves allows an estimate of the average thickness of the crust across the region between the stations. The inversion of the velocity structure was carried out using the inter-station dispersion of surface waves of Rayleigh and Love types. The teleseismic events are mainly from the edges of the South and North American plates. The period of data collection occurred between 2007 and 2010 and we selected 7 events with magnitude above 5.0 MW and up to 40 km depth. The difference between the events back-azimuths and the interstation path was not greater than 10. We also know the depth of the Moho, results from Receiver Functions (Novo Barbosa, 2008), and use those as constrains in inversion. Even using different parameterizations of models for the inversion, our results were very similar the mean profiles velocity structure of S-wave. In pairs of stations located in the Cear´a Central Domain Borborema the province, there are ranges of depths for which the velocities of S are very close. Most of the results in the profile near the Moho complicate their interpretation at that depth, coinciding with the geology of the region, where there are many shear zones. In particular, the profile that have the route Potiguar Bacia in inter-station, had low velocities in the crust. We combine these results to the results of gravimetry and magnetometry (Oliveira, 2008) and receptor function (Novo Barbosa, 2008). We finally, the first results on the behavior of the velocity structure of S-wave with depth in the Province Borborema