941 resultados para Invariant rings
Resumo:
To a reasonable approximation, a secondary structures of RNA is determined by Watson-Crick pairing without pseudo-knots in such a way as to minimise the number of unpaired bases: We show that this minimal number is determined by the maximal conjugacy-invariant pseudo-norm on the free group on two generators subject to bounds on the generators. This allows us to construct lower bounds on the minimal number of unpaired bases by constructing conjugacy invariant pseudo-norms. We show that one such construction, based on isometric actions on metric spaces, gives a sharp lower bound. A major goal here is to formulate a purely mathematical question, based on considering orthogonal representations, which we believe is of some interest independent of its biological roots.
Resumo:
Long-term stability studies of particle storage rings can not be carried out using conventional numerical integration algorithms. We require symplectic integration algorithms which are both fast and accurate. In this paper, we study a symplectic integration method wherein the sym-plectic map representing the Hamiltonian system is refactorized using polynomial symplectic maps. This method is used to perform long term integration on a particle storage ring.
Resumo:
We present a construction of constant weight codes based on the prime ideals of a Noetherian commutative ring. The coding scheme is based on the uniqueness of the primary decomposition of ideals in Noetherian rings. The source alphabet consists of a set of radical ideals constructed from a chosen subset of the prime spectrum of the ring. The distance function between two radical ideals is taken to be the Hamming metric based on the symmetric distance between sets. As an application we construct codes for random networks employing SAF routing.
Resumo:
The setting considered in this paper is one of distributed function computation. More specifically, there is a collection of N sources possessing correlated information and a destination that would like to acquire a specific linear combination of the N sources. We address both the case when the common alphabet of the sources is a finite field and the case when it is a finite, commutative principal ideal ring with identity. The goal is to minimize the total amount of information needed to be transmitted by the N sources while enabling reliable recovery at the destination of the linear combination sought. One means of achieving this goal is for each of the sources to compress all the information it possesses and transmit this to the receiver. The Slepian-Wolf theorem of information theory governs the minimum rate at which each source must transmit while enabling all data to be reliably recovered at the receiver. However, recovering all the data at the destination is often wasteful of resources since the destination is only interested in computing a specific linear combination. An alternative explored here is one in which each source is compressed using a common linear mapping and then transmitted to the destination which then proceeds to use linearity to directly recover the needed linear combination. The article is part review and presents in part, new results. The portion of the paper that deals with finite fields is previously known material, while that dealing with rings is mostly new.Attempting to find the best linear map that will enable function computation forces us to consider the linear compression of source. While in the finite field case, it is known that a source can be linearly compressed down to its entropy, it turns out that the same does not hold in the case of rings. An explanation for this curious interplay between algebra and information theory is also provided in this paper.
Resumo:
The repeated or closely spaced eigenvalues and corresponding eigenvectors of a matrix are usually very sensitive to a perturbation of the matrix, which makes capturing the behavior of these eigenpairs very difficult. Similar difficulty is encountered in solving the random eigenvalue problem when a matrix with random elements has a set of clustered eigenvalues in its mean. In addition, the methods to solve the random eigenvalue problem often differ in characterizing the problem, which leads to different interpretations of the solution. Thus, the solutions obtained from different methods become mathematically incomparable. These two issues, the difficulty of solving and the non-unique characterization, are addressed here. A different approach is used where instead of tracking a few individual eigenpairs, the corresponding invariant subspace is tracked. The spectral stochastic finite element method is used for analysis, where the polynomial chaos expansion is used to represent the random eigenvalues and eigenvectors. However, the main concept of tracking the invariant subspace remains mostly independent of any such representation. The approach is successfully implemented in response prediction of a system with repeated natural frequencies. It is found that tracking only an invariant subspace could be sufficient to build a modal-based reduced-order model of the system. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
The components of EHV/UHV lines and substations can produce significant corona. To limit the consequent Radio Interference and Audible Noise on these systems, suitable corona control rings are employed. The shapes of these rings could vary from circular to rectangular with smooth bends. Many manufacturers seem to adopt trial and error method for arriving at the final design. As such neither the present testing standard nor the final design adopted consider the practical scenario like corona produced by deposition of dirt, bird droppings, etc. The present work aims to make a first step in addressing this practically important problem. This requires an accurate evaluation of the electric field and a reliable method for the evaluation of corona inception. Based on a thorough survey of pertinent literature, the critical avalanche criteria as applicable to large electrodes, has been adopted. Taking the rain drop on the surface as the biggest protrusion, conducting protrusions modeled as semi-ellipsoid is considered as representative for deposition of dust or the boundary of bird droppings etc. Through examples of 4 00 kV and 765 kV class toroidal corona rings, the proposed method is demonstrated. This work is believed to be useful to corona ring manufacturers for EHV/UHV systems.
Resumo:
We consider the asymptotics of the invariant measure for the process of spatial distribution of N coupled Markov chains in the limit of a large number of chains. Each chain reflects the stochastic evolution of one particle. The chains are coupled through the dependence of transition rates on the spatial distribution of particles in the various states. Our model is a caricature for medium access interactions in wireless local area networks. Our model is also applicable in the study of spread of epidemics in a network. The limiting process satisfies a deterministic ordinary differential equation called the McKean-Vlasov equation. When this differential equation has a unique globally asymptotically stable equilibrium, the spatial distribution converges weakly to this equilibrium. Using a control-theoretic approach, we examine the question of a large deviation from this equilibrium.
Resumo:
Following up the work of 1] on deformed algebras, we present a class of Poincare invariant quantum field theories with particles having deformed internal symmetries. The twisted quantum fields discussed in this work satisfy commutation relations different from the usual bosonic/fermionic commutation relations. Such twisted fields by construction are nonlocal in nature. Despite this nonlocality we show that it is possible to construct interaction Hamiltonians which satisfy cluster decomposition principle and are Lorentz invariant. We further illustrate these ideas by considering global SU(N) symmetries. Specifically we show that twisted internal symmetries can provide a natural-framework for the discussion of the marginal deformations (beta-deformations) of the N = 4 SUSY theories.
Resumo:
The enzyme, D-xylose isomerase (D-xylose keto-isomerase; EC 5.3.1.5) is a soluble enzyme that catalyzes the conversion of the aldo-sugar D-xylose to the keto-sugar D-xylulose. A total of 27 subunits of D-xylose isomerase from Streptomyces rubiginosus were analyzed in order to identify the invariant water molecules and their water-mediated ionic interactions. A total of 70 water molecules were found to be invariant. The structural and/or functional roles of these water molecules have been discussed. These invariant water molecules and their ionic interactions may be involved in maintaining the structural stability of the enzyme D-xylose isomerase. Fifty-eight of the 70 invariant water molecules (83%) have at least one interaction with the main chain polar atom.
Resumo:
In this paper, we investigate the initiation and subsequent evolution of Crow instability in an inhomogeneous unitary Fermi gas using zero-temperature Galilei-invariant nonlinear Schrodinger equation. Considering a cigar-shaped unitary Fermi gas, we generate the vortex-antivortex pair either by phase-imprinting or by moving a Gaussian obstacle potential. We observe that the Crow instability in a unitary Fermi gas leads to the decay of the vortex-antivortex pair into multiple vortex rings and ultimately into sound waves.
Resumo:
Let M be the completion of the polynomial ring C(z) under bar] with respect to some inner product, and for any ideal I subset of C (z) under bar], let I] be the closure of I in M. For a homogeneous ideal I, the joint kernel of the submodule I] subset of M is shown, after imposing some mild conditions on M, to be the linear span of the set of vectors {p(i)(partial derivative/partial derivative(w) over bar (1),...,partial derivative/partial derivative(w) over bar (m)) K-I] (., w)vertical bar(w=0), 1 <= i <= t}, where K-I] is the reproducing kernel for the submodule 2] and p(1),..., p(t) is some minimal ``canonical set of generators'' for the ideal I. The proof includes an algorithm for constructing this canonical set of generators, which is determined uniquely modulo linear relations, for homogeneous ideals. A short proof of the ``Rigidity Theorem'' using the sheaf model for Hilbert modules over polynomial rings is given. We describe, via the monoidal transformation, the construction of a Hermitian holomorphic line bundle for a large class of Hilbert modules of the form I]. We show that the curvature, or even its restriction to the exceptional set, of this line bundle is an invariant for the unitary equivalence class of I]. Several examples are given to illustrate the explicit computation of these invariants.
Resumo:
Pyridoxal kinase (PdxK; EC 2.7.1.35) belongs to the phosphotransferase family of enzymes and catalyzes the conversion of the three active forms of vitamin B-6, pyridoxine, pyridoxal and pyridoxamine, to their phosphorylated forms and thereby plays a key role in pyridoxal 5 `-phosphate salvage. In the present study, pyridoxal kinase from Salmonella typhimurium was cloned and overexpressed in Escherichia coli, purified using Ni-NTA affinity chromatography and crystallized. X-ray diffraction data were collected to 2.6 angstrom resolution at 100 K. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unitcell parameters a = 65.11, b = 72.89, c = 107.52 angstrom. The data quality obtained by routine processing was poor owing to the presence of strong diffraction rings caused by a polycrystalline material of an unknown small molecule in all oscillation images. Excluding the reflections close to powder/polycrystalline rings provided data of sufficient quality for structure determination. A preliminary structure solution has been obtained by molecular replacement with the Phaser program in the CCP4 suite using E. coli pyridoxal kinase (PDB entry 2ddm) as the phasing model. Further refinement and analysis of the structure are likely to provide valuable insights into catalysis by pyridoxal kinases.
Resumo:
In this paper, we extend the characterization of Zx]/(f), where f is an element of Zx] to be a free Z-module to multivariate polynomial rings over any commutative Noetherian ring, A. The characterization allows us to extend the Grobner basis method of computing a k-vector space basis of residue class polynomial rings over a field k (Macaulay-Buchberger Basis Theorem) to rings, i.e. Ax(1), ... , x(n)]/a, where a subset of Ax(1), ... , x(n)] is an ideal. We give some insights into the characterization for two special cases, when A = Z and A = ktheta(1), ... , theta(m)]. As an application of this characterization, we show that the concept of Border bases can be extended to rings when the corresponding residue class ring is a finitely generated, free A-module. (C) 2014 Elsevier B.V. All rights reserved.