604 resultados para Intracranial Aneurysms
Resumo:
The concept of cellular schwannoma as an unusual benign tumor is well established for peripheral nerves but has never been tested in neurosurgical series. In order to test the validity of this concept in cranial nerves and spinal roots we performed an analysis of the clinical and morphological characteristics of 12 cellular and 166 classical benign schwannomas. Immunohistochemical detection of antigen expression in Schwann cells including proliferating cell nuclear antigen (PCNA) was also performed. This study shows that cellular schwannomas in neurosurgical series manifest at a lower age than the classical benign variant and occur mainly in the spinal roots. Mitotic activity and sinusoidal vessels appear more frequently in cellular schwannomas and constitute with high cellularity, the most valuable criteria separating both entities. The postoperative course in both types of tumors was free of metastases or sarcomatous changes. Immunoexpression of S-100 protein, vimentin, epithelial membrane antigen and glial fibrillary acidic protein is not statistically different between the two variants. In contrast, PCNA is more highly expressed in cellular schwannomas. These These results confirm the concept that cellular schwannomas are a clinico-pathological variant of benign schwannomas and provide significant support for the introduction of this entity in neurosurgical oncology.
Resumo:
Pre-operative assessment and surgical management of patients with non-lesional extratemporal epilepsy remain challenging due to a lack of precise localisation of the epileptic zone. In most cases, invasive recording with depth or subdural electrodes is required. Here, we describe the case of 6.5-year-old girl who underwent comprehensive non-invasive phase I video-EEG investigation for drug-resistant epilepsy, including electric source and nuclear imaging. Left operculo-insular epilepsy was diagnosed. Post-operatively, she developed aphasia which resolved within one year, corroborating the notion of enhanced language plasticity in children. The patient remained seizure-free for more than three years.
Resumo:
BACKGROUND: Increased intracranial pressure (ICP) worsens the outcome of acute liver failure (ALF). This study investigates the underlying pathophysiological mechanisms and evaluates the therapeutic effect of albumin dialysis in ALF with use of the Molecular Adsorbents Recirculating System without hemofiltration/dialysis (modified, M-MARS). METHODS: Pigs were randomized into three groups: sham, ALF, and ALF + M-MARS. ALF was induced by hepatic devascularization (time = 0). M-MARS began at time = 2 and ended with the experiment at time = 6. ICP, arterial ammonia, brain water, cerebral blood flow (CBF), and plasma inflammatory markers were measured. RESULTS: ICP and arterial ammonia increased significantly over 6 hrs in the ALF group, in comparison with the sham group. M-MARS attenuated (did not normalize) the increased ICP in the ALF group, whereas arterial ammonia was unaltered by M-MARS. Brain water in the frontal cortex (grey matter) and in the subcortical white matter at 6 hrs was significantly higher in the ALF group than in the sham group. M-MARS prevented a rise in water content, but only in white matter. CBF and inflammatory mediators remained unchanged in all groups. CONCLUSION: The initial development of cerebral edema and increased ICP occurs independently of CBF changes in this noninflammatory model of ALF. Factor(s) other than or in addition to hyperammonemia are important, however, and may be more amenable to alteration by albumin dialysis.
Resumo:
Ce travail de thèse porte sur la simulation du déploiement des prothèses vasculaires de type stent-graft (SG) lors de la réparation endovasculaire (EVAR) des anévrismes de l’aorte abdominale (AAA). Cette étude se présente en trois parties: (i) tests mécaniques en flexion et compression de SG couramment utilisés (corps et jambage de marque Cook) ainsi que la simulation numérique desdits tests, (ii) développement d’un modèle numérique d’anévrisme, (iii) stratégie de simulation du déploiement des SG. La méthode numérique employée est celle des éléments finis. Dans un premier temps, une vérification du modèle éléments finis (MEF) des SG est realisée par comparaison des différents cas de charge avec leur pendant expérimental. Ensuite, le MEF vasculaire (AAA) est lui aussi vérifié lors d’une comparaison des niveaux de contraintes maximales principales dans la paroi avec des valeurs de la littérature. Enfin, le déploiement est abordé tout en intégrant les cathéters. Les tests mécaniques menés sur les SG ont été simulés avec une différence maximale de 5,93%, tout en tenant compte de la pré-charge des stents. Le MEF de la structure vasculaire a montré des contraintes maximales principales éloignées de 4,41% par rapport à un modèle similaire précédemment publié. Quant à la simulation du déploiement, un jeu complet de SG a pu être déployé avec un bon contrôle de la position relative et globale, dans un AAA spécifique pré-déformé, sans toutefois inclure de thrombus intra-luminal (TIL). La paroi du AAA a été modélisée avec une loi de comportement isotropique hyperélastique. Étant donné que la différence maximale tolérée en milieu clinique entre réalité et simulation est de 5%, notre approche semble acceptable et pourrait donner suite à de futurs développements. Cela dit, le petit nombre de SG testés justifie pleinement une vaste campagne de tests mécaniques et simulations supplémentaires à des fins de validation.
Resumo:
We previously demonstrated in pigs with acute liver failure (ALF) that albumin dialysis using the molecular adsorbents recirculating system (MARS) attenuated a rise in intracranial pressure (ICP). This was independent of changes in arterial ammonia, cerebral blood flow and inflammation, allowing alternative hypotheses to be tested. The aims of the present study were to determine whether changes in cerebral extracellular ammonia, lactate, glutamine, glutamate, and energy metabolites were associated with the beneficial effects of MARS on ICP. Three randomized groups [sham, ALF (induced by portacaval anastomosis and hepatic artery ligation), and ALF+MARS] were studied over a 6-hour period with a 4-hour MARS treatment given beginning 2 hours after devascularization. Using cerebral microdialysis, the ALF-induced increase in extracellular brain ammonia, lactate, and glutamate was significantly attenuated in the ALF+MARS group as well as the increases in extracellular lactate/pyruvate and lactate/glucose ratios. The percent change in extracellular brain ammonia correlated with the percent change in ICP (r(2) = 0.511). Increases in brain lactate dehydrogenase activity and mitochondrial complex activity for complex IV were found in ALF compared with those in the sham, which was unaffected by MARS treatment. Brain oxygen consumption did not differ among the study groups. Conclusion: The observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- and MARS-treated animals indicates that the attenuation of increased extracellular brain ammonia (and extracellular brain glutamate) in the MARS-treated animals reduces energy demand and increases supply, resulting in attenuation of increased extracellular brain lactate. The mechanism of how MARS reduces extracellular brain ammonia requires further investigation.
Resumo:
Hyperammonemia is a feature of acute liver failure (ALF), which is associated with increased intracranial pressure (ICP) and brain herniation. We hypothesized that a combination of L-ornithine and phenylacetate (OP) would synergistically reduce toxic levels of ammonia by (1) L-ornithine increasing glutamine production (ammonia removal) through muscle glutamine synthetase and (2) phenylacetate conjugating with the ornithine-derived glutamine to form phenylacetylglutamine, which is excreted into the urine. The aims of this study were to determine the effect of OP on arterial and extracellular brain ammonia concentrations as well as ICP in pigs with ALF (induced by liver devascularization). ALF pigs were treated with OP (L-ornithine 0.07 g/kg/hour intravenously; phenylbutyrate, prodrug for phenylacetate; 0.05 g/kg/hour intraduodenally) for 8 hours following ALF induction. ICP was monitored throughout, and arterial and extracellular brain ammonia were measured along with phenylacetylglutamine in the urine. Compared with ALF + saline pigs, treatment with OP significantly attenuated concentrations of arterial ammonia (589.6 +/- 56.7 versus 365.2 +/- 60.4 mumol/L [mean +/- SEM], P= 0.002) and extracellular brain ammonia (P= 0.01). The ALF-induced increase in ICP was prevented in ALF + OP-treated pigs (18.3 +/- 1.3 mmHg in ALF + saline versus 10.3 +/- 1.1 mmHg in ALF + OP-treated pigs;P= 0.001). The value of ICP significantly correlated with the concentration of extracellular brain ammonia (r(2) = 0.36,P< 0.001). Urine phenylacetylglutamine levels increased to 4.9 +/- 0.6 micromol/L in ALF + OP-treated pigs versus 0.5 +/- 0.04 micromol/L in ALF + saline-treated pigs (P< 0.001).Conclusion:L-Ornithine and phenylacetate act synergistically to successfully attenuate increases in arterial ammonia, which is accompanied by a significant decrease in extracellular brain ammonia and prevention of intracranial hypertension in pigs with ALF.
Resumo:
Recent advances in the field of chaotic advection provide the impetus to revisit the dynamics of particles transported by blood flow in the presence of vessel wall irregularities. The irregularity, being either a narrowing or expansion of the vessel, mimicking stenoses or aneurysms, generates abnormal flow patterns that lead to a peculiar filamentary distribution of advected particles, which, in the blood, would include platelets. Using a simple model, we show how the filamentary distribution depends on the size of the vessel wall irregularity, and how it varies under resting or exercise conditions. The particles transported by blood flow that spend a long time around a disturbance either stick to the vessel wall or reside on fractal filaments. We show that the faster flow associated with exercise creates widespread filaments where particles can get trapped for a longer time, thus allowing for the possible activation of such particles. We argue, based on previous results in the field of active processes in flows, that the non-trivial long-time distribution of transported particles has the potential to have major effects on biochemical processes occurring in blood flow, including the activation and deposition of platelets. One aspect of the generality of our approach is that it also applies to other relevant biological processes, an example being the coexistence of plankton species investigated previously.
Resumo:
The influence of 2 different levels of the inspired oxygen fraction (FiO(2)) on blood gas variables was evaluated in dogs with high intracranial pressure (ICP) during propofol anesthesia (induction followed by a continuous rate infusion [CRI] of 0.6 mg/kg/min) and intermittent positive pressure ventilation (IPPV). Eight adult mongrel dogs were anesthetized on 2 occasions, 21 d apart, and received oxygen at an FiO(2) of 1.0 (G100) or 0.6 (G60) in a randomized crossover fashion. A fiberoptic catheter was implanted on the surface of the right cerebral cortex for assessment of the ICP. An increase in the ICP was induced by temporary ligation of the jugular vein 50 min after induction of anesthesia and immediately after baseline measurement of the ICP. Blood gas measurements were taken 20 min later and then at 15-min intervals for 1 h. Numerical data were submitted to Morrison's multivariate statistical methods. The ICP, the cerebral perfusion pressure and the mean arterial pressure did not differ significantly between FiO(2) levels or measurement times after jugular ligation. The only blood gas values that differed significantly (P < 0.05) were the arterial oxygen partial pressure, which was greater with G100 than with G60 throughout the procedure, and the venous haemoglobin saturation, that was greater with G100 than with G60 at M0. There were no significant differences between FiO(2) levels or measurement times in the following blood gas variables: arterial carbon dioxide partial pressure, arterial hemoglobin saturation, base deficit, bicarbonate concentration, pH, venous oxygen partial pressure, venous carbon dioxide partial pressure and the arterial-to-end-tidal carbon dioxide difference.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: So far the only endovascular option to treat patients with thoraco abdominal aortic aneurysms is the deployment of branched grafts. We describe a technique consisting of the deployment of standard off-the- shelf grafts to treat urgent cases.Material and Methods: The sandwich technique consists of the deployment of ViaBahn chimney grafts in combination with standard thoracic and abdominal aortic stent grafts. The chimney grafts are deployed using a transbrachial and transaxillary access. These coaxial grafts are placed inside the thoracic tube graft. After deployment of the infrarenal bifurcated abdominal graft a bridging stent-a short tube graft is positioned inside the thoracic graft further stabilizing the chimney grafts.Results: 5 patients with symptomatic thoraco abdominal aneurysms were treated. There was one Type I endoleak that resolved after 2 months. In all patients 3 stentgrafts had to be used When possible all visceral and renal branches were revascularized. A total number of 17 arteries were reconnected with covered branches. During follow up we lost one target vessel the right renal artery.Conclusion: The sandwich technique in combination with chimney grafts permits a total endovascular exclusion of thoraco abdominal aortic aneurysms. In all cases off-the shelf products and grafts could be used. The number of patients treated so far is still too small to draw further more robust conclusions with regard to long term performance and durability. (C) 2010 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In ascending aorta aneurysms, there is an enlargement of the whole vessel, whereas aortic dissections (ADs) are characterized by the cleavage of the wall into 2 sheets at the external half. We searched if alterations in collagen could be related to these diseases. Sections of aortas from 14 case patients with acute dissections, 10 case patients with aneurysms, and 9 control subjects were stained with picrosirius. Slides were analyzed under polarized microscopy to evaluate the structure of collagen fibers. The proportion of collagen was calculated in each half of the medial layer by color detection in a computerized image analysis system. Collagen appearance under polarized light was consistent with collagenolysis. The mean collagen proportions at the inner and outer halves, respectively, were 0.50 +/- 0.13 and 0.40 +/- 0.08 in the control group, 0.20 +/- 0.10 and 0.18 +/- 0.12 in the AD group, and 0.33 +/- 0.12 and 0.19 +/- 0.12 in the aneurysm group. The AD (P < .01) and control (P = .04) groups had less collagen at the external half, no difference was found in the aneurysm group (P = .71). In both halves, there was less collagen in the case patients than in the control subjects (all P < .01), but at the internal half, the decrease was significantly greater in the case patients with aneurysms than in those with dissections (P = .03; at the external half, P = .99). Aortic dissections and aneurysms show a decrease in collagen content that could be related to a weakness of the wall underlying the diseases, but the locations of the decrease differ: in dissections, it is situated mostly at the external portion of the media (site of cleavage), whereas in aneurysms, it is more diffuse, consistent with the global enlargement. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: Scarce data are available on the occurrence of symptomatic intracranial hemorrhage related to intravenous thrombolysis for acute stroke in South America. We aimed to address the frequency and clinical predictors of symptomatic intracranial hemorrhage after stroke thrombolysis at our tertiary emergency unit in Brazil. METHOD: We reviewed the clinical and radiological data of 117 consecutive acute ischemic stroke patients treated with intravenous thrombolysis in our hospital between May 2001 and April 2010. We compared our results with those of the Safe Implementation of Thrombolysis in Stroke registry. Univariate and multiple regression analyses were performed to identify factors associated with symptomatic intracranial transformation. RESULTS: In total, 113 cases from the initial sample were analyzed. The median National Institutes of Health Stroke Scale score was 16 (interquartile range: 10-20). The median onset-to-treatment time was 188 minutes (interquartile range: 155-227). There were seven symptomatic intracranial hemorrhages (6.2%; Safe Implementation of Thrombolysis in Stroke registry: 4.9%; p = 0.505). In the univariate analysis, current statin treatment and elevated National Institute of Health Stroke Scale scores were related to symptomatic intracranial hemorrhage. After the multivariate analysis, current statin treatment was the only factor independently associated with symptomatic intracranial hemorrhage. CONCLUSIONS: In this series of Brazilian patients with severe strokes treated with intravenous thrombolysis in a public university hospital at a late treatment window, we found no increase in the rate of symptomatic intracranial hemorrhage. Additional studies are necessary to clarify the possible association between statins and the risk of symptomatic intracranial hemorrhage after stroke thrombolysis.