915 resultados para Intra- and inter-specific polymorphism
Resumo:
Changes in the depth of Lake Viljandi between 1940 and 1990 were simulated using a lake water and energy-balance model driven by standard monthly weather data. Catchment runoff was simulated using a one-dimensional hydrological model, with a two-layer soil, a single-layer snowpack, a simple representation of vegetation cover and similarly modest input requirements. Outflow was modelled as a function of lake level. The simulated record of lake level and outflow matched observations of lake-level variations (r = 0.78) and streamflow (r = 0.87) well. The ability of the model to capture both intra- and inter-annual variations in the behaviour of a specific lake, despite the relatively simple input requirements, makes it extremely suitable for investigations of the impacts of climate change on lake water balance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although the Brazilian sharpnose shark, Rhizoprionodon lalandii (Muller and Henle, 1839), is an inshore species widely distributed in the Western Atlantic from Panama to Uruguay, there is little available information on its biology. During a long-term study of small coastal sharks caught by gill net fisheries in southeastern Brazil (PROJETO CACAO), 3643 specimens of R. lalandii were examined, comprising 61.3% of the total sharks,and including all sizes classes, from 30 to 78,5 cm TL., and weights from 100 to 2950 g. The length-weight relationships were not significantly different between sexes, Overall sex ratio favoured the males slightly at the rate of 1.3: 1. Sex ratios, however, did differ significantly between season and size classes. This species occurred in this area all year long. Three seasonal size-class Occurrence patterns were recognized: (1) between October and March, the juveniles were more frequents (2) from April to July, adults were most common, and (3) from August to September, neonates were most numerically abundant. Such patterns we to associated with reproductive tactics that may reduce intra-specific and inter-specific competition with hammerhead shark neonates (Sphyrna lewini). probably result in reduced natural mortality of the offspring during their first few months. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The present work was conducted with the objective to study the effects of mineral nutrition on Eucalyptus grandis and Brachiaria decumbens (#BRADC) growth, when submitted to inter- and intra-specific competition. The treatments consisted of two plants of Eucalypts/pot, two plants of BRADC/pot, and one plant of each species/pot. The plants were nourished with the Hoagland e Arnon (1950) complete solution; with no K, P or N; or only with either N, P or K. Sixty days after growing side by side, no effect of the inter- and intra-specific competition on eucalypts plant high, branch number and leaf dry mass was observed. When mineral nutrition did not limit plant growth (complete solution or solution with no K), intra-specific competition reduced on average, 23% of eucalypts root length, leaf area, and stem and root dry mass, and inter-specific competition reduced, on average, 75% of BRADC dry mass. When mineral nutrition became a limiting factor, no plant competition effect on the parameters studied was detected.
Resumo:
Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB
Resumo:
This paper reports on a process to validate a revised version of a system for coding classroom discourse in foreign language lessons, a context in which the dual role of language (as content and means of communication) and the speakers' specific pedagogical aims lead to a certain degree of ambiguity in language analysis. The language used by teachers and students has been extensively studied, and a framework of concepts concerning classroom discourse well-established. Models for coding classroom language need, however, to be revised when they are applied to specific research contexts. The application and revision of an initial framework can lead to the development of earlier models, and to the re-definition of previously established categories of analysis that have to be validated. The procedures followed to validate a coding system are related here as guidelines for conducting research under similar circumstances. The advantages of using instruments that incorporate two types of data, that is, quantitative measures and qualitative information from raters' metadiscourse, are discussed, and it is suggested that such procedure can contribute to the process of validation itself, towards attaining reliability of research results, as well as indicate some constraints of the adopted research methodology.
Resumo:
Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.
Resumo:
Abstract Background The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. Results We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. Conclusion The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
Resumo:
The submitted work concentrated on the study of mRNA expression of two distinct GABA transporters, GAT-1 and GAT-3, in the rat brain. For the detection and quantification of the chosen mRNAs, appropriate methods had to be established. Two methods, ribonuclease protection assay (RPA) and competitive RT-PCR were emloyed in the present study. Competitive RT-PCR worked out to be 20 times more sensitive as RPA. Unlike the sensitivity, the fidelity of both techniques was comparable with respect to their intra- and inter-assay variability.The basal mRNA levels of GAT-1 and GAT-3 were measured in various brain regions. Messenger RNAs for both transporters were detected in all tested brain regions. Depending on the region, the observed mRNA level for GAT-1 was 100-300 higher than for GAT-3. The GAT-1 mRNA levels were similar in all tested regions. The distribution of GAT-3 mRNA seemed to be more region specific. The strongest GAT-3 mRNA expression was detected in striatum, medulla oblongata and thalamus. The lowest levels of GAT-3 were in cortex frontalis and cerebellum.Furthermore, the mRNA expression for GAT-1 and GAT-3 was analysed under altered physiological conditions; in kindling model of epilepsy and also after long-term treatment drugs modulating GABAergic transmission. In kindling model of epilepsy, altered GABA transporter function was hypothesised by During and coworkers (During et al., 1995) after observed decrease in binding of nipecotic acid, a GAT ligand, in hippocampus of kindled animals. In the present work, the mRNA levels were measured in hippocampus and whole brain samples. Neither GAT-1 nor GAT-3 showed altered transcription in any tested region of kindled animals compared to controls. This leads to conclusion that an altered functionality of GABA transporters is involved in epilepsy rather than a change in their expression.The levels of GAT-1 and GAT-3 mRNAs were also measured in the brain of rats chronically treated with diazepam or zolpidem, GABAA receptor agonists. Prior to the molecular biology tests, behavioural analysis was carried out with chronically and acutely treated animals. In two tests, open field and elevated plus-maze, the basal activity exploration and anxiety-like behaviour were analysed. Zolpidem treatment increased exploratory activity. There were observed no differencies between chronically and acutely treated animals. Diazepam increased exploratory activity and decresed anxiety-like behaviour when applied acutely. This effect disappeard after chronic administration of diazepam. The loss of effect suggested a development of tolerance to effects of diazepam following long-term administration. Double treatment, acute injection of diazepam after chronic diazepam treatment, confirmed development of a tolerance to effects of diazepam. Also, the mRNAs for GAT-1 and GAT-3 were analysed in cortex frontalis, hippocampus, cerebellum and whole brain samples of chronically treated animals. The mRNA levels for any of tested GABA transporters did not show significant changes in any of tested region neither after diazepam nor zolpidem treatment. Therefore, changes in GAT-1 and GAT-3 transcription are probably not involved in adaptation of GABAergic system to long-term benzodiazepine administration and so in development of tolerance to benzodiazepines.
Resumo:
In the present thesis I examined individual and sex-specific habitat use and site fidelity in the western barbastelle bat, Barbastella barbastellus, using data from a four-year monitoring in a Special Area of Conservation in Rhineland-Palatinate, Germany. The western barbastelle occurs in central and southern Europe from Portugal to the Caucasus, but is considered to be rare in large parts of its range. Up to now, long-term field studies to assess interannual site fidelity and the possible effects of intra- and interspecific competition have not been studied in this species. Nevertheless, such data provide important details to estimate the specific spatial requirements of its populations, which in turn can be incorporated in extended conservation actions. I used radio-telemetry, home range analyses und automated ultrasound detection to assess the relation between landscape elements and western barbastelle bats and their roosts. In addition, I estimated the degree of interspecific niche overlap with two selected forest-dwelling bat species, Bechstein's bat (Myotis bechsteinii) and the brown long-eared bat (Plecotus auritus). Intra- and interannual home range overlap analyses of female B. barbastellus revealed that fidelity to individual foraging grounds, i.e. a traditional use of particular sites, seems to effect the spatial distribution of home ranges more than intraspecific competition among communally roosting females. The results of a joint analysis of annual maternity roost selection and flight activities along commuting corridors highlight the necessity to protect roost complexes in conjunction with commuting corridors. Using radio-tracking data and an Euclidean distance approach I quantified the sex-specific and individual habitat use by female and male western barbastelle bats within their home ranges. My data indicated a partial sexual segregation in summer habitats. Females were found in deciduous forest patches and preferably foraged along linear elements within the forest. Males foraged closer to forest edges and in open habitats. Finally, I examined the resource partitioning between the western barbastelle bat and two syntopic bat species with a potential for interspecific competition due to similarities in foraging strategies, prey selection and roost preferences. Simultaneous radio-tracking of mixed-species pairs revealed a partial spatial separation of the three syntopic bat species along a gradient from the forest to edge habitats and open landscape. Long-eared bats were found close to open habitats which were avoided by the other two species. B. barbastellus preferred linear landscape elements (edge habitats) and forests, M. bechsteinii also preferred forest habitats. Only little overlap in terms of roost structure and tree species selection was found.
Resumo:
Spatial analyses of plant-distribution patterns can provide inferences about intra- and interspecific biotic interactions. Yet, such analyses are rare for clonal plants because effective tools (i.e., molecular markers) needed to map naturally occurring clonal individuals have only become available recently. Clonal plants are unique in that a single genotype has a potential to spatially place new individuals (i.e., ramets) in response to intra- and interspecific biotic interactions. Laboratory and greenhouse studies suggest that some clonal plants can avoid intra-genet, inter-genet, and inter-specific competition via rootplacement patterns. An intriguing and yet to be explored question is whether a spatial signature of such multi-level biotic interactions can be detected in natural plant communities. The facultatively clonal Serenoa repens and non-clonal Sabal etonia are ecologically similar and co-dominant palmettos that sympatrically occur in the Florida peninsula. We used amplified fragment length polymorphisms (AFLPs) to identify Serenoa genets and also to assign field-unidentifiable small individuals as Sabal seedlings, Serenoa seedlings, or Serenoa vegetative sprouts. Then, we conducted univariate and bivariate multi-distance spatial analyses to examine the spatial interactions of Serenoa (n=271) and Sabal (n=137) within a 20x20 m grid at three levels, intragenet, intergenet and interspecific. We found that spatial interactions were not random at all three levels of biotic interactions. Serenoa genets appear to spatially avoid self-competition as well as intergenet competition. Furthermore, Serenoa and Sabal were spatially negatively associated with each other. However, this negative association pattern was also evident in a spatial comparison between non-clonal Serenoa and Sabal, suggesting that Serenoa genets’ spatial avoidance of Sabal through placement of new ramets is not the explanation of the interspecific-level negative spatial pattern. Our results emphasize the importance of investigating spatial signatures of biotic as well as abiotic interactions at multiple levels in understanding spatial distribution patterns of clonal plants in natural plant communities.
Resumo:
AIMS Transcatheter mitral valve replacement (TMVR) is an emerging technology with the potential to treat patients with severe mitral regurgitation at excessive risk for surgical mitral valve surgery. Multimodal imaging of the mitral valvular complex and surrounding structures will be an important component for patient selection for TMVR. Our aim was to describe and evaluate a systematic multi-slice computed tomography (MSCT) image analysis methodology that provides measurements relevant for transcatheter mitral valve replacement. METHODS AND RESULTS A systematic step-by-step measurement methodology is described for structures of the mitral valvular complex including: the mitral valve annulus, left ventricle, left atrium, papillary muscles and left ventricular outflow tract. To evaluate reproducibility, two observers applied this methodology to a retrospective series of 49 cardiac MSCT scans in patients with heart failure and significant mitral regurgitation. For each of 25 geometrical metrics, we evaluated inter-observer difference and intra-class correlation. The inter-observer difference was below 10% and the intra-class correlation was above 0.81 for measurements of critical importance in the sizing of TMVR devices: the mitral valve annulus diameters, area, perimeter, the inter-trigone distance, and the aorto-mitral angle. CONCLUSIONS MSCT can provide measurements that are important for patient selection and sizing of TMVR devices. These measurements have excellent inter-observer reproducibility in patients with functional mitral regurgitation.
Resumo:
El extraordinario auge de las nuevas tecnologías de la información, el desarrollo de la Internet de las Cosas, el comercio electrónico, las redes sociales, la telefonía móvil y la computación y almacenamiento en la nube, han proporcionado grandes beneficios en todos los ámbitos de la sociedad. Junto a éstos, se presentan nuevos retos para la protección y privacidad de la información y su contenido, como la suplantación de personalidad y la pérdida de la confidencialidad e integridad de los documentos o las comunicaciones electrónicas. Este hecho puede verse agravado por la falta de una frontera clara que delimite el mundo personal del mundo laboral en cuanto al acceso de la información. En todos estos campos de la actividad personal y laboral, la Criptografía ha jugado un papel fundamental aportando las herramientas necesarias para garantizar la confidencialidad, integridad y disponibilidad tanto de la privacidad de los datos personales como de la información. Por otro lado, la Biometría ha propuesto y ofrecido diferentes técnicas con el fin de garantizar la autentificación de individuos a través del uso de determinadas características personales como las huellas dáctilares, el iris, la geometría de la mano, la voz, la forma de caminar, etc. Cada una de estas dos ciencias, Criptografía y Biometría, aportan soluciones a campos específicos de la protección de datos y autentificación de usuarios, que se verían enormemente potenciados si determinadas características de ambas ciencias se unieran con vistas a objetivos comunes. Por ello es imperativo intensificar la investigación en estos ámbitos combinando los algoritmos y primitivas matemáticas de la Criptografía con la Biometría para dar respuesta a la demanda creciente de nuevas soluciones más técnicas, seguras y fáciles de usar que potencien de modo simultáneo la protección de datos y la identificacíón de usuarios. En esta combinación el concepto de biometría cancelable ha supuesto una piedra angular en el proceso de autentificación e identificación de usuarios al proporcionar propiedades de revocación y cancelación a los ragos biométricos. La contribución de esta tesis se basa en el principal aspecto de la Biometría, es decir, la autentificación segura y eficiente de usuarios a través de sus rasgos biométricos, utilizando tres aproximaciones distintas: 1. Diseño de un esquema criptobiométrico borroso que implemente los principios de la biometría cancelable para identificar usuarios lidiando con los problemas acaecidos de la variabilidad intra e inter-usuarios. 2. Diseño de una nueva función hash que preserva la similitud (SPHF por sus siglas en inglés). Actualmente estas funciones se usan en el campo del análisis forense digital con el objetivo de buscar similitudes en el contenido de archivos distintos pero similares de modo que se pueda precisar hasta qué punto estos archivos pudieran ser considerados iguales. La función definida en este trabajo de investigación, además de mejorar los resultados de las principales funciones desarrolladas hasta el momento, intenta extender su uso a la comparación entre patrones de iris. 3. Desarrollando un nuevo mecanismo de comparación de patrones de iris que considera tales patrones como si fueran señales para compararlos posteriormente utilizando la transformada de Walsh-Hadarmard. Los resultados obtenidos son excelentes teniendo en cuenta los requerimientos de seguridad y privacidad mencionados anteriormente. Cada uno de los tres esquemas diseñados han sido implementados para poder realizar experimentos y probar su eficacia operativa en escenarios que simulan situaciones reales: El esquema criptobiométrico borroso y la función SPHF han sido implementados en lenguaje Java mientras que el proceso basado en la transformada de Walsh-Hadamard en Matlab. En los experimentos se ha utilizado una base de datos de imágenes de iris (CASIA) para simular una población de usuarios del sistema. En el caso particular de la función de SPHF, además se han realizado experimentos para comprobar su utilidad en el campo de análisis forense comparando archivos e imágenes con contenido similar y distinto. En este sentido, para cada uno de los esquemas se han calculado los ratios de falso negativo y falso positivo. ABSTRACT The extraordinary increase of new information technologies, the development of Internet of Things, the electronic commerce, the social networks, mobile or smart telephony and cloud computing and storage, have provided great benefits in all areas of society. Besides this fact, there are new challenges for the protection and privacy of information and its content, such as the loss of confidentiality and integrity of electronic documents and communications. This is exarcebated by the lack of a clear boundary between the personal world and the business world as their differences are becoming narrower. In both worlds, i.e the personal and the business one, Cryptography has played a key role by providing the necessary tools to ensure the confidentiality, integrity and availability both of the privacy of the personal data and information. On the other hand, Biometrics has offered and proposed different techniques with the aim to assure the authentication of individuals through their biometric traits, such as fingerprints, iris, hand geometry, voice, gait, etc. Each of these sciences, Cryptography and Biometrics, provides tools to specific problems of the data protection and user authentication, which would be widely strengthen if determined characteristics of both sciences would be combined in order to achieve common objectives. Therefore, it is imperative to intensify the research in this area by combining the basics mathematical algorithms and primitives of Cryptography with Biometrics to meet the growing demand for more secure and usability techniques which would improve the data protection and the user authentication. In this combination, the use of cancelable biometrics makes a cornerstone in the user authentication and identification process since it provides revocable or cancelation properties to the biometric traits. The contributions in this thesis involve the main aspect of Biometrics, i.e. the secure and efficient authentication of users through their biometric templates, considered from three different approaches. The first one is designing a fuzzy crypto-biometric scheme using the cancelable biometric principles to take advantage of the fuzziness of the biometric templates at the same time that it deals with the intra- and inter-user variability among users without compromising the biometric templates extracted from the legitimate users. The second one is designing a new Similarity Preserving Hash Function (SPHF), currently widely used in the Digital Forensics field to find similarities among different files to calculate their similarity level. The function designed in this research work, besides the fact of improving the results of the two main functions of this field currently in place, it tries to expand its use to the iris template comparison. Finally, the last approach of this thesis is developing a new mechanism of handling the iris templates, considering them as signals, to use the Walsh-Hadamard transform (complemented with three other algorithms) to compare them. The results obtained are excellent taking into account the security and privacy requirements mentioned previously. Every one of the three schemes designed have been implemented to test their operational efficacy in situations that simulate real scenarios: The fuzzy crypto-biometric scheme and the SPHF have been implemented in Java language, while the process based on the Walsh-Hadamard transform in Matlab. The experiments have been performed using a database of iris templates (CASIA-IrisV2) to simulate a user population. The case of the new SPHF designed is special since previous to be applied i to the Biometrics field, it has been also tested to determine its applicability in the Digital Forensic field comparing similar and dissimilar files and images. The ratios of efficiency and effectiveness regarding user authentication, i.e. False Non Match and False Match Rate, for the schemes designed have been calculated with different parameters and cases to analyse their behaviour.
Resumo:
Glutaraldehyde is one of the most widely used reagents in the design of biocatalysts. It is a powerful crosslinker, able to react with itself, with the advantages that this may bring forth. In this review, we intend to give a general vision of its potential and the precautions that must be taken when using this effective reagent. First, the chemistry of the glutaraldehyde/amino reaction will be commented upon. This reaction is still not fully clarified, but it seems to be based on the formation of 6-membered heterocycles formed by 5 C and one O. Then, we will discuss the production of intra- and inter-molecular enzyme crosslinks (increasing enzyme rigidity or preventing subunit dissociation in multimeric enzymes). Special emphasis will be placed on the preparation of cross-linked enzyme aggregates (CLEAs), mainly in enzymes that have low density of surface reactive groups and, therefore, may be problematic to obtain a final solid catalyst. Next, we will comment on the uses of glutaraldehyde in enzymes previously immobilized on supports. First, the treatment of enzymes immobilized on supports that cannot react with glutaraldehyde (only inter and intramolecular cross-linkings will be possible) to prevent enzyme leakage and obtain some enzyme stabilization via cross-linking. Second, the cross-linking of enzymes adsorbed on aminated supports, where together with other reactions enzyme/support crosslinking is also possible; the enzyme is incorporated into the support. Finally, we will present the use of aminated supports preactivated with glutaraldehyde. Optimal glutaraldehyde modifications will be discussed in each specific case (one or two glutaraldehyde molecules for amino group in the support and/or the protein). Using preactivated supports, the heterofunctional nature of the supports will be highlighted, with the drawbacks and advantages that the heterofunctionality may have. Particular attention will be paid to the control of the first event that causes the immobilization depending on the experimental conditions to alter the enzyme orientation regarding the support surface. Thus, glutaraldehyde, an apparently old fashioned reactive, remains the most widely used and with broadest application possibilities among the compounds used for the design of biocatalyst.
Resumo:
Polybenzoxazine (PBA-a)/poly(epsilon-caprolactone) (PCL) blends were prepared by an in situ curing reaction of benzoxazine (BA-a) in the presence of PCL. Before curing, the benzoxazine (BA-a)/PCL blends are miscible, which was evidenced by the behaviors of single and composition-dependant glass transition temperature and equilibrium melting point depression. However, the phase separation induced by polymerization was observed after curing at elevated temperature. It was expected that after curing, the PBA-a/PCL blends would be miscible since the phenolic hydroxyls in the PBA-a molecular backbone have the potential to form inter- molecular hydrogen-bonding interactions with the carbonyls of PCL and thus would fulfil the miscibility of the blends. The resulting morphology of the blends prompted an investigation of the status of association between PBA-a and PCL under the curing conditions. Although Fourier-transform infrared spectroscopy (FT-IR) showed that there were intermolecular hydrogen-bonding interactions between PBA-a and PCL at room temperature, especially for the PCL-rich blends, the results of variable temperature FT-IR spectroscopy by the model compound indicate that the phenolic hydroxyl groups could not form efficient intermolecular hydrogen-bonding interactions at elevated temperatures, i.e., the phenolic hydroxyl groups existed mainly in the non-associated form in the system during curing. The results are valuable to understand the effect of curing temperature on the resulting morphology of the thermosetting blends. SEM micrograph of the dichloromethane-etched fracture surface of a 90:10 PBA-a PCL blend showing a heterogeneous morphology.