966 resultados para Interstitial fibrosis
Resumo:
Le cellule mesenchimali stromali (MSC) sono cellule multipotenti e numerosi studi hanno mostrato i loro effetti benefici nel danno renale acuto ma non sono ancora stati dimostrati potenziali effetti nella malattia renale cronica. L'ostruzione ureterale unilaterale (UUO) è un modello di fibrosi interstiziale nel quale l'attivazione di molecole vasoattive, citochine profibrotiche e infiammatorie gioca un ruolo patogenetico nello sviluppo dell'apoptosi e atrofia tubulare. Il sistema renina-angiotensina (RAS) gioca un ruolo chiave nello sviluppo della fibrosi renale e i farmaci che hanno come target l'angiotensina II, principale mediatore del RAS, sono attualmente la terapia più efficace nel ridurre la progressione della malattia renale cronica. E' noto che gli ACE-inibitori (ACEi) inducono un aumento compensatorio della renina plasmatica per la mancaza del feedback negativo sulla sua produzione. Tuttavia, la renina (R) promuove il danno renale non solo stimolando la produzione di ANGII, ma anche up-regolando geni profibrotici attraverso l'attivazione del recettore renina/prorenina. Lo scopo dello studio è stato indagare se l'infusione di MSC riduceva il danno renalein un modello animale di UUO e comparare gli eventuali effetti protettivi di ACEi e MSC in UUO. Abbiamo studiato 5 gruppi di ratti. A: sham operati. B: ratti sottoposti a UUO che ricevevano soluzione salina. C: ratti sottoposti a UUO che ricevavano MSC 3X106 nella vena della coda al giorno 0. D:ratti sottoposti a UUO che ricevevano lisinopril dal g 1 al g 21. E: ratti sottoposti a UUO che ricevevano MSC 3X106 nella vena della coda al giorno 0 e lisinopril dal g 1 al g 21. I ratti sono stati sacrificati al giorno 7 e 21. I risultati dello studio mostrano che MSC in UUO prevengono l'aumento della renina, riducono la generazione di ANGII e che in terapia combinata con ACEi riducono ulteriormente l'ANGII, determinando una sinergia nel miglioramento della fibrosi renale.
Resumo:
Myostatin, ein Mitglied der TGF-β Familie von Wachstumsfaktoren, ist ein negativer Regulator des Skelettmuskelwachstums. Obwohl Myostatin nach einer Vielzahl pathologischer Zustände im Herzen massiv hochreguliert wird, ist die physiologische und pathophysiologische Funktion von Myostatin im Herzen noch kaum erforscht. Deshalb wurde im Rahmen dieser Dissertation die Funktion von Myostatin im adulten Herzen untersucht. Dazu wurden Mausmodelle, in denen Myostatin in Kardiomyozyten deletiert und überexprimiert wird, verwendet. Ich konnte zeigen, dass die akute Deletion von Myostatin in Kardiomyozyten zu einer erhöhten Lethalität, Herzinsuffizienz und Hypertrophie führt. Dabei konnte ich eine Aktivierung der AMP-aktivierten Kinase (AMPK) als Ursache der Hypertrophie identifizieren und mit Hilfe eines AMPK Inhibitors die Entstehung der Hypertrophie in vivo verhindern. Des Weiteren konnte ich in vivo und in vitro zeigen, dass Myostatin AMPK über die TGF-β-aktivierte Kinase 1 (TAK1) und seinen kanonischen Rezeptor inhibiert. Die akute Deletion von Myostatin hemmte auch die Expression von Rgs2, einem Inhibitor der Gq Signalkaskade, und führte dadurch zu einer Aktivierung dieses für Herzinsuffizienz elementaren Signalweges. Außerdem verbesserte die akute adulte Überexpression von Myostatin die Herzkontraktilität leicht, während eine langfristige Überexpression eine interstitielle Fibrose, die über TAK1 und p38 vermittelt wird, induzierte. Hiermit konnte ich Myostatin als neuen Regulator der Hypertrophie und Herzinsuffizienz etablieren.rn
Resumo:
Rotator cuff lesions are common and the incidence increases with age. After tendon rupture of the rotator cuff, the muscle-tendon unit retracts, which is accompanied by muscle fatty infiltration, atrophy, and interstitial fibrosis of the musculature, thus, fundamentally changing the muscle architecture. These changes are important prognostic factors for the operative rotator cuff reconstruction outcome. Selection of the correct time point for reconstruction as well as the optimal mechanical fixation technique are decisive for successful attachment at the tendon-to-bone insertion site. Thus, knowledge of the pathophysiological processes plays an important role. The goal of this article is to establish a relationship between currently existing evidence with respect to the preoperatively existing changes of the muscle-tendon unit and the choice of the time for the operation and the operative technique.
Resumo:
Previous studies demonstrated that impaired left ventricular (LV) relaxation in cardiac allografts limits exercise tolerance post-transplant despite preserved systolic ejection fraction (EF). This study tested in human cardiac allografts whether the isovolumic relaxation time (IVRT), which provides the basis for most of diastolic LV filling, relates with gene expression of regulatory proteins of calcium homeostasis or cardiac matrix proteins. Gene expression was studied in 31 heart transplant recipients (25 male, 6 female) 13-83 months post-transplant with LVEF >50%, LV end-diastolic pressure <20 mmHg, normal LV mass index and without allograft rejection or significant cardiac pathology. IVRT related with the other diastolic parameters e-wave velocity (r = -0.46; p = 0.01), e/a-wave ratio (r = -0.5; p < 0.01) but not with heart frequency (r = -0.16; p = 0.4). No relation of IVRT was observed for immunosuppression, mean rejection grade or other medication. IVRT was not related with gene expression of desmin, collagen I, phospholamban, the Na+-Ca2+ exchanger, the ryanodine receptor or interstitial fibrosis but correlated inversely with SERCA2a (r = -0.48; p = 0.02). Prolonged IVRT is associated with decreased SERCA2a expression in cardiac allografts without significant other pathology. Similar observations in non-transplanted patients with diastolic failure suggest that decreased SERCA2a expression is an important common pathomechanism.
Resumo:
Keratin 8 (KRT8) is one of the major intermediate filament proteins expressed in single-layered epithelia of the gastrointestinal tract. Transgenic mice over-expressing human KRT8 display pancreatic mononuclear infiltration, interstitial fibrosis and dysplasia of acinar cells resulting in exocrine pancreatic insufficiency. These experimental data are in accordance with a recent report describing an association between KRT8 variations and chronic pancreatitis. This prompted us to investigate KRT8 polymorphisms in patients with pancreatic disorders. The KRT8 Y54H and G62C polymorphisms were assessed in a cohort of patients with acute and chronic pancreatitis of various aetiologies or pancreatic cancer originating from Austria (n=16), the Czech Republic (n=90), Germany (n=1698), Great Britain (n=36), India (n=60), Italy (n=143), the Netherlands (n=128), Romania (n=3), Spain (n=133), and Switzerland (n=129). We also studied 4,234 control subjects from these countries and 1,492 control subjects originating from Benin, Cameroon, Ethiopia, Ecuador, and Turkey. Polymorphisms were analysed by melting curve analysis with fluorescence resonance energy transfer probes. The frequency of G62C did not differ between patients with acute or chronic pancreatitis, pancreatic adenocarcinoma and control individuals. The frequency of G62C varied in European populations from 0.4 to 3.8%, showing a northwest to southeast decline. The Y54H alteration was not detected in any of the 2,436 patients. Only 3/4,580 (0.07%) European, Turkish and Indian control subjects were heterozygous for Y54H in contrast to 34/951 (3.6%) control subjects of African descent. Our data suggest that the KRT8 alterations, Y54H and G62C, do not predispose patients to the development of pancreatitis or pancreatic cancer.
Resumo:
Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial-mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors. Little attention has been paid to the possibility of a transformation of resident fibroblasts into myofibroblasts in renal fibrosis. Therefore we examined the fate of resident fibroblasts in the initial phase of renal fibrosis in the classical model of unilateral ureter obstruction (UUO) in the rat. Rats were perfusion-fixed on days 1, 2, 3 and 4 after ligature of the right ureter. Starting from 1 day of UUO an increasing expression of alpha-smooth muscle actin (alphaSMA) in resident fibroblasts was revealed by immunofluorescence and confirmed by the observation of bundles of microfilaments and webs of intermediate filaments in the electron microscope. Inversely, there was a decreased expression of 5'-nucleotidase (5'NT), a marker of renal cortical fibroblasts. The RER became more voluminous, suggesting an increased synthesis of matrix. Intercellular junctions, a characteristic feature of myofibroblasts, became more frequent. The mitotic activity in fibroblasts was strongly increased. Renal tubules underwent severe regressive changes but the cells retained their epithelial characteristics and there was no sign of EMT. In conclusion, after ureter ligature, resident peritubular fibroblasts proliferated and they showed progressive alterations, suggesting a transformation in myofibroblasts. Thus the resident fibroblasts likely play a central role in fibrosis in that model.
Resumo:
Die Systemsklerose ist charakterisiert durch autoimmune Phänomene und eine progressive Fibrose. Klinische Charakteristika sind neben der Sklerodermie ein ausgeprägtes Raynaud-Phänomen und Abnormitäten der Nagelfalzkapillaren, ferner pulmonale, renale, kardiale und intestinale Veränderungen. In der Regel wird eine diffuse von einer limitierten Form unterschieden. Die diffuse Form führt zu einer Sklerose des gesamten Integumentes, ist assoziiert mit dem Auto-antikörper Scl-70 und zeichnet sich durch eine rasche Krankheitsprogression aus. Die limitierte Form betrifft die distalen Extremitäten und das Gesicht, ist assoziiert mit dem centromer Autoantikörper und führt schleichend, über mehrere Jahre zu viszeralen Problemen. Neue therapeutische Möglichkeiten können zu einer besseren Lebensqualität verhelfen und verpflichten zu einem systematischen Krankheitsmonitoring.
Resumo:
In ongoing chronic rejection after lung transplantation, alveolar interstitial fibrosis develops. However, little is known about the mechanisms involved. In order to investigate these mechanisms, expression of extracellular matrix molecules (ECM) (undulin, decorin, tenascin, laminin, and fibronectin) and cytokines [transforming growth factor (TGF)-beta 1, TGF-beta 3, platelet-derived growth factor (PDGF), and PDGF receptor] were semiquantitatively evaluated in chronically rejected lung allografts, using standard immunohistochemical techniques. Additionally, the presence of macrophages was analysed. The present study demonstrates an increased infiltration of macrophages with a concomitant upregulation of cytokines (TGF-beta 1, TGF-beta 3, and PDGF) and an increased deposition of ECM in chronic lung rejection. These cytokines have an important role in the stimulation of fibroblasts which are a major source of ECM. Upregulated expression of ECM in the alveolar interstitial space leads to alveolar malfunction by thickening of the wall and, thus, is one of the causative factors of respiratory dysfunction in chronic lung graft rejection.
Resumo:
BACKGROUND: Regression of left ventricular (LV) hypertrophy with normalization of diastolic function has been reported in patients with aortic stenosis late after aortic valve replacement (AVR). The purpose of the present study was to evaluate the effect of AVR on LV function and structure in chronic aortic regurgitation early and late after AVR. METHODS AND RESULTS: Twenty-six patients were included in the present analysis. Eleven patients with severe aortic regurgitation were studied before, early (21 months) and late (89 months) after AVR through the use of LV biplane angiograms, high-fidelity pressure measurements, and LV endomyocardial biopsies. Fifteen healthy subjects were used as controls. LV systolic function was determined from biplane ejection fraction and midwall fractional shortening. LV diastolic function was calculated from the time constant of LV relaxation, peak filling rates, and myocardial stiffness constant. LV structure was assessed from muscle fiber diameter, interstitial fibrosis, and fibrous content. LV muscle mass decreased significantly by 38% early and 55% late after surgery. Ejection fraction was significantly reduced preoperatively and did not change after AVR (P=NS). LV relaxation was significantly prolonged before surgery (89+/-28 ms) but was normalized late after AVR (42+/-14 ms). Early and late peak filling rates were increased preoperatively but normalized postoperatively. Diastolic stiffness constant was increased before surgery (22+/-6 versus 9+/-3 in control subjects; P=0.0003) and remained elevated early and late after AVR (23+/-4; P=0.002). Muscle fiber diameter decreased significantly after AVR but remained increased at late follow-up. Interstitial fibrosis was increased preoperatively and increased even further early but decreased late after AVR. Fibrosis was positively linearly correlated to myocardial stiffness and inversely correlated to LV ejection fraction. CONCLUSIONS: Patients with aortic regurgitation show normalization of macroscopic LV hypertrophy late after AVR, although fiber hypertrophy persists. These changes in LV myocardial structure late after AVR are accompanied by a change in passive elastic properties with persistent diastolic dysfunction.
Resumo:
Chronic renal allograft injury is often reflected by interstitial fibrosis (IF) and tubular atrophy (TA) without evidence of specific etiology. In most instances, IF/TA remains an irreversible disorder, representing a major cause of long-term allograft loss. As members of the protease family metzincins and functionally related genes are involved in fibrotic and sclerotic processes of the extracellular matrix (ECM), we hypothesized their deregulation in IF/TA. Gene expression and protein level analyses using allograft biopsies with and without Banff'05 classified IF/TA illustrated their deregulation. Expression profiles of these genes differentiated IF/TA from Banff'05 classified Normal biopsies in three independent microarray studies and demonstrated histological progression of IF/TA I to III. Significant upregulation of matrix metalloprotease-7 (MMP-7) and thrombospondin-2 (THBS-2) in IF/TA biopsies and sera was revealed in two independent patient sets. Furthermore, elevated THBS-2, osteopontin (SPP1) and beta-catenin may play regulatory roles on MMP. Our findings further suggest that deregulated ECM remodeling and possibly epithelial to mesenchymal transition (EMT) are implicated in IF/TA of kidney transplants, and that metzincins and related genes play an important role in these processes. Profiling of these genes may be used to complement IF/TA diagnosis and to disclose IF/TA progression in kidney transplant recipients.
Resumo:
Natriuretic peptides, produced in the heart, bind to the natriuretic peptide receptor A (NPRA) and cause vasodilation and natriuresis important in the regulation of blood pressure. We here report that mice lacking a functional Npr1 gene coding for NPRA have elevated blood pressures and hearts exhibiting marked hypertrophy with interstitial fibrosis resembling that seen in human hypertensive heart disease. Echocardiographic evaluation of the mice demonstrated a compensated state of systemic hypertension in which cardiac hypertrophy and dilatation are evident but with no reduction in ventricular performance. Nevertheless, sudden death, with morphologic evidence indicative in some animals of congestive heart failure and in others of aortic dissection, occurred in all 15 male mice lacking Npr1 before 6 months of age, and in one of 16 females in our study. Thus complete absence of NPRA causes hypertension in mice and leads to cardiac hypertrophy and, particularly in males, lethal vascular events similar to those seen in untreated human hypertensive patients.
Resumo:
Postprandial hyperglycemia is implicated as a risk factor predisposing to vascular complications. This study was designed to assess recurrent short-term increases in glucose on markers of renal fibrogenesis. Human renal cortical fibroblasts were exposed to fluctuating short-term (2 h) increases to 15 mM D-glucose, three times a day over 72 h, on a background of 5 mM D-glucose. To determine whether observed changes were due to fluctuating osmolality, identical experiments were undertaken with cells exposed to L-glucose. Parallel experiments were performed in cells exposed to 5 mM D-glucose and constant exposure to either 15 or 7.5 mM D-glucose. Fluctuating D-glucose increased extracellular matrix, as measured by proline incorporation ( P < 0.05), collagen IV ( P < 0.005), and fibronectin production ( P < 0.001), in association with increased tissue inhibitor of matrix metalloproteinase (MMP) ( P < 0.05). Sustained exposure to 15 mM D-glucose increased fibronectin ( P < 0.001), in association with increased MMP-2 ( P = 0.01) and MMP-9 activity ( P < 0.05), suggestive of a protective effect on collagen matrix accumulation. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA was increased after short-term (90 min) exposure to 15 mM glucose (P < 0.05) and after 24-h exposure to 7.5 mM ? ( P < 0.05). Normalization of TGF-beta(1) secretion occurred within 48 h of constant exposure to an elevated glucose. Fluctuating L-glucose also induced TGF-beta(1) mRNA and a profibrotic profile, however, to a lesser extent than observed with exposure to fluctuating D-glucose. The results suggest that exposure to fluctuating glucose concentrations increases renal interstitial fibrosis compared with stable elevations in D-glucose. The effects are, in part, due to the inherent osmotic changes.
Resumo:
The end point of immune and nonimmune renal injury typically involves glomerular and tubulointerstitial fibrosis. Although numerous studies have focused on the events that lead to renal fibrosis, less is known about the mechanisms that promote cellular repair and tissue remodeling. Described is a model of renal injury and repair after the reversal of unilateral ureteral obstruction (UUO) in male C57b1/6J mice. Male mice (20 to 25 g) underwent 10 d of UUO with or without 1, 2, 4, or 6 wk of reversal of UUO (R-UUO). UUO resulted in cortical tubular cell atrophy and tubular dilation in conjunction with an almost complete ablation of the outer medulla. This was associated with interstitial macrophage infiltration; increased hydroxyproline content; and upregulated type I, III, IV, and V collagen expression. The volume density of kidney occupied by renal tubules that exhibited a brush border was measured as an assessment of the degree of repair after R-UUO. After 6 wk of R-UUO, there was an increase in the area of kidney occupied by repaired tubules (83.7 +/- 5.9%), compared with 10 d UUO kidneys (32.6 +/- 7.3%). This coincided with reduced macrophage numbers, decreased hydroxyproline content, and reduced collagen accumulation and interstitial matrix expansion, compared with obstructed kidneys from UUO mice. GFR in the 6-wk R-UUO kidneys was restored to 43 to 88% of the GFR in the contralateral unobstructed kidneys. This study describes the regenerative potential of the kidney after the established interstitial matrix expansion and medullary ablation associated with UUO in the adult mouse.
Resumo:
Aims - Glycogen synthase kinase 3 (GSK-3) signalling is implicated in the growth of the heart during development and in response to stress. However, its precise role remains unclear. We set out to characterize developmental growth and response to chronic isoproterenol (ISO) stress in knockin (KI) mice lacking the critical N-terminal serines, 21 of GSK-3 and 9 of GSK-3 respectively, required for inactivation by upstream kinases. Methods and results - Between 5 and 15 weeks, KI mice grew more rapidly, but normalized heart weight and contractile performance were similar to wild-type (WT) mice. Isolated hearts of both genotypes responded comparably to acute ISO infusion with increases in heart rate and contractility. In WT mice, chronic subcutaneous ISO infusion over 14 days resulted in cardiac hypertrophy, interstitial fibrosis, and impaired contractility, accompanied by foetal gene reactivation. These effects were all significantly attenuated in KI mice. Indeed, ISO-treated KI hearts demonstrated reversible physiological remodelling traits with increased stroke volume and a preserved contractile response to acute adrenergic stimulation. Furthermore, simultaneous pharmacological inhibition of GSK-3 in KI mice treated with chronic subcutaneous ISO recapitulated the adverse remodelling phenotype seen in WT hearts. Conclusion - Expression of inactivation-resistant GSK-3/does not affect eutrophic myocardial growth but protects against pathological hypertrophy induced by chronic adrenergic stimulation, maintaining cardiac function and attenuating interstitial fibrosis. Accordingly, strategies to prevent phosphorylation of Ser-21/9, and consequent inactivation of GSK-3/, may enable a sustained cardiac response to chronic-agonist stimulation while preventing pathological remodelling. © 2010 The Author.