904 resultados para Interstellar medium
Resumo:
The growth of magnetic fields in the density gradient of a rarefaction wave has been observed in simulations and in laboratory experiments. The thermal anisotropy of the electrons, which gives rise to the magnetic instability, is maintained by the ambipolar electric field. This simple mechanism could be important for the magnetic field amplification in astrophysical jets or in the interstellar medium ahead of supernova remnant shocks. The acceleration of protons and the generation of a magnetic field by the rarefaction wave, which is fed by an expanding circular plasma cloud, is examined here in form of a 2D particle-in-cell simulation. The core of the plasma cloud is modeled by immobile charges, and the mobile protons form a small ring close to the cloud's surface. The number density of mobile protons is thus less than that of the electrons. The protons of the rarefaction wave are accelerated to 1/10 of the electron thermal speed, and the acceleration results in a thermal anisotropy of the electron distribution in the entire plasma cloud. The instability in the rarefaction wave is outrun by a TM wave, which grows in the dense core distribution, and its magnetic field expands into the rarefaction wave. This expansion drives a secondary TE wave. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769128]
Resumo:
The collision of two plasma clouds at a speed that exceeds the ion acoustic speed can result in the formation of shocks. This phenomenon is observed not only in astrophysical scenarios, such as the propagation of supernova remnant (SNR) blast shells into the interstellar medium, but also in laboratory-based laser-plasma experiments. These experiments and supporting simulations are thus seen as an attractive platform for small-scale reproduction and study of astrophysical shocks in the laboratory. We model two plasma clouds, which consist of electrons and ions, with a 2D particle-in-cell simulation. The ion temperatures of both clouds differ by a factor of ten. Both clouds collide at a speed that is realistic for laboratory studies and for SNR shocks in their late evolution phase, like that of RCW86. A magnetic field, which is orthogonal to the simulation plane, has a strength that is comparable to that of SNR shocks. A forward shock forms between the overlap layer of both plasma clouds and the cloud with cooler ions. A large-amplitude ion acoustic wave is observed between the overlap layer and the cloud with hotter ions. It does not steepen into a reverse shock because its speed is below the ion acoustic speed. A gradient of the magnetic field amplitude builds up close to the forward shock as it compresses the magnetic field. This gradient gives rise to an electron drift that is fast enough to trigger an instability. Electrostatic ion acoustic wave turbulence develops ahead of the shock, widens its transition layer, and thermalizes the ions, but the forward shock remains intact. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have significantly more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova lightcurve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.
Resumo:
The icy surfaces of dust grains in the Interstellar Medium and those of comets, satellites and Kuiper Belt Objects are continuously exposed tophoton and charged particle irradiation. These energetic particles maysputter and induce chemical changes in the ices and the underlyingsurfaces.In the present work 258 nm thick O2 and H2O ices were deposited at 10 K with the thickness measured by a laser interferometer method. Asimple model fit to the reflected laser intensity as measured by aphotodiode detector enabled the refractive index of the ices to bedetermined. The ices were then irradiated with various singly and doublycharged ions such as He+, 13C+, N+, O+ , Ar+, 13C2+, N2+ and O2+ at 4keV. The decrease in ice thickness as a function of ion dose wasmonitored by a laser interferometer and the model used to determine thesputtering yield as shown in Figure 1.In the case of O2 ice thesputtering yields increased with increasing ion mass in good agreementwith a model calculation [Fama, J, Shi, R.A Baragiola, Surface Sci.,602, 156 (2007)]. In the case of O2 ice, O2+ has a significant lowersputtering yield when compared to O+. The sputtering yields for O2 icewere found to be at least 9 times larger compared to those for H2O ice.For H2O ice the sputter yields for C, N and O ions were found todecrease with increasing mass. Doubly charged C, N and O ions which werefound to have the same sputtering yield as the singly charged ionswithin the experimental errors. A preliminary TPD study was carried outusing a QMS to detect the desorbed species from water ice afterirradiation by 6 × 10^15 ions of 13C+ and 13C2+. The formation of13CO and 13CO2 was observed with the yield of 13CO almost of a factor of100 larger than of 13CO2. This is in contrast to our earlier work whereonly CO¬2 was observed.
Resumo:
This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme.We found that five post-AGB stars showed a broad feature with a peak at 7.7 μm, that had not been classified before. Further, the 10-13 μm PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 μm rather than two distinct sharp peaks at 11.3 and 12.7 μm, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to planetary nebulae, changing their composition before PAHs are incorporated into the interstellar medium. Although some metallicity dependence of PAH spectra exists, the evolutionary state of an object is more significant than its metallicity in determining the spectral characteristics of PAHs for LMC and Galactic post-AGB stars. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE ) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS ) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC due to both the SMC's smaller size and its lower dust content. The YSO candidate lists may be contaminated at low flux levels by background galaxies, and so we differentiate between sources with a high ("probable") and moderate ("possible ") likelihood of being a YSO. There are 2493/425 probable YSO candidates in the LMC/SMC. Approximately 73% of the Herschel YSO candidates are newly identified in the LMC, and 35% in the SMC. We further identify a small population of dusty objects in the late stages of stellar evolution including extreme and post-asymptotic giant branch, planetary nebulae, and supernova remnants. These populations are identified by matching the HERITAGE catalogs to lists of previously identified objects in the literature. Approximately half of the LMC sources and one quarter of the SMC sources are too faint to obtain accurate ample FIR photometry and are unclassified.
Resumo:
We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 mu m data and improved imaging quality at 100 and 160 mu m compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 mu m [O-I] line flux, eliminating the possibility that line contaminations distort the previously estimated dustmass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 mu m flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 +/- 0.1M(circle dot) of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3M(circle dot) of amorphous carbon and 0.5M(circle dot) of silicates, totalling 0.8M(circle dot) of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.
Resumo:
An ultra-relativistic electron beam passing through a thick, high-Z solid target triggers an electromagnetic cascade, whereby a large number of high energy photons and electron-positron pairs are produced. By exploiting this physical process, we present here the first experimental evidence of the generation of ultra-short, highly collimated and ultra-relativistic positron beams following the interaction of a laser-wake field accelerated electron beam with high-Z solid targets. Clear evidence has also been obtained of the generation of GeV electron-positron jets with variable composition depending on the solid target material and thickness. The percentage of positrons in the overall leptonic beam has been observed to vary from a few per cent up to almost fifty per cent, implying a quasi-neutral electron-positron beam. We anticipate that these beams will be of direct relevance to the laboratory study of astrophysical leptonic jets and their interaction with the interstellar medium.
Resumo:
X-ray and radio observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a nonlinear feedback process involving cosmic rays. The origin of the large magnetic field in the interior of the remnant is less clear but it is presumably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas9. However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed before the supernova explosion. Here we investigate the possibility that turbulent amplification is induced when the outer shock overtakes dense clumps in the ambient medium. We report laboratory experiments that indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. The experiment also provides a laboratory example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena.
Resumo:
In the last 40 years a wide range of molecules, including neutrals, cations and anions, containing up to 13 atoms—in addition to detections of C60 and C70 — have been found in the harsh environment of the interstellar medium. The exquisite sensitivity and very high spectral and, more recently, spatial resolution, of modern telescopes has enabled the physics of star formation to be probed through rotational line emission. In this article, I review the basic properties of interstellar clouds and the processes that initiate the chemistry and generate chemical complexity, particularly in regions of star and planet formation. Our understanding of astrochemistry has evolved over the years. Before 1990, the general consensus was that molecules were formed in binary, gas-phase, or volume, reactions, most importantly ion-neutral reactions despite the very low ionization in clouds. Since then, observations have indicated unambiguously that there is also a contribution from surface processes, particularly on the icy mantles that form around refractory grain cores in cold, dense gas. The balance between these two processes depends on particular physical conditions and can vary during the life cycle of a particular volume of interstellar cloud.The complex chemistry that occurs in space is driven mostly through interaction of thegas with cosmic ray protons, a source of ionization that enables a rich ion-neutral chemistry. In addition, I show that the interaction between the gas and the dust in cold, dense regionsalso leads to additional chemical complexity through reactions that take place in ices at onlya few tens of degrees above absolute zero. Although densities are low compared to those in terrestrial environments, the extremely long life times of interstellar clouds and their enormous sizes, enable complex molecules to be synthesised and detected. I show that in some instances, particularly in reactions involving deuterium, the rotational populations of reactants, together with spin-selection rules, can determine the detailed abundances. Although the review is mainly focused on regions associated with star formation, I also consider chemistry in other interesting astronomical regions — in the early Universe and in the envelopes formed by mass loss during the final stages of stellar evolution.
Resumo:
Latex a été utilisé pour la redaction de cette thèse.
Resumo:
The ejection of the gas out of the disc in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper, we studied in detail the development of the Galactic fountains in order to understand their dynamical evolution and their influence on the redistribution of the freshly delivered metals over the disc. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernova explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to similar to 2 kpc which than collapses back mostly in the form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disc remaining within a radial distance Delta R = 0.5 kpc from the place where the fountain originated. This localized circulation of disc gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.
Resumo:
Our numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian and Vishniac (1999) model of fast reconnection. We trace particles within our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration. We discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We here explore the effects of the SN explosions into the halo of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D non-equilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The ejection of gas out of the disc in late-type galaxies is related to star formation and is mainly due to the explosion of Type II supernovae (SN II). In a previous paper, we considered the evolution of a single Galactic fountain, that is, a fountain powered by a single SN cluster. Using three-dimensional hydrodynamical simulations, we studied in detail the fountain flow and its dependence with several factors, such as the Galactic rotation, the distance to the Galactic centre and the presence of a hot gaseous halo. As a natural followup, this paper investigates the dynamical evolution of multiple generations of fountains generated by similar to 100 OB associations. We have considered the observed size-frequency distribution of young stellar clusters within the Galaxy in order to appropriately fuel the multiple fountains in our simulations. Most of the results of the previous paper have been confirmed, like for example the formation of intermediate velocity clouds above the disc by the multiple fountains. Also, this work confirms the localized nature of the fountain flows: the freshly ejected metals tend to fall back close to the same Galactocentric region where they are delivered. Therefore, the fountains do not change significantly the radial profile of the disc chemical abundance. The multiple fountain simulations also allowed us to consistently calculate the feedback of the star formation on the halo gas. We found that the hot gas gains about 10 per cent of all the SN II energy produced in the disc. Thus, the SN feedback more than compensate for the halo radiative losses and allow for a quasi steady-state disc-halo circulation to exist. Finally, we have also considered the possibility of mass infall from the intergalactic medium and its interaction with the clouds that are formed by the fountains. Though our simulations are not suitable to reproduce the slow rotational pattern that is typically observed in the haloes around the disc galaxies, they indicate that the presence of an external gas infall may help to slow down the rotation of the gas in the clouds and thus the amount of angular momentum that they transfer to the coronal gas, as previously suggested in the literature.