838 resultados para International Typographical Union.
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are discussed.
Resumo:
We have conducted a program of trigonometric distance measurements to 13 members of the TW Hydrae Association (TWA), which will enable us (through back-tracking methods) to derive a convincing estimate of the age of the association, independent of stellar evolutionary models. With age, distance, and luminosity known for an ensemble of TWA stars and brown dwarfs, models of early stellar evolution (which are still uncertain for young ages and substellar masses) will then be constrained by observations over a wide range of masses (0.025 to 0.7 M⊙).
Resumo:
To reliably determine the main physical parameters (masses and ages) of young stars, we must know their distances. While the average distance to nearby star-forming regions (<300 pc) is often known, the distances to individual stars are usually unknown. Individual distances to members of young moving groups can be derived from their radial velocities and proper motions using the convergent-point strategy. We investigate the kinematic properties of the Lupus moving group with the primary objective of deriving individual distances to all group members.
Resumo:
In this paper, a sample of planetary nebulae in the Galaxy's inner-disk and bulge is used to find the galactocentric distance that optimally separates these two populations in terms of their abundances. Statistical distance scales were used to investigate the distribution of abundances across the disk–bulge interface, while a Kolmogorov–Smirnov test was used to find the distance at which the chemical properties of these regions separate optimally. The statistical analysis indicates that, on average, the inner population is characterized by lower abundances than the outer component. Additionally, for the α-element abundances, the inner population does not follow the disk's radial gradient toward the Galactic Center. Based on our results, we suggest a bulge–disk interface at 1.5 kpc, marking the transition between the bulge and the inner disk of the Galaxy as defined by the intermediate-mass population.
Resumo:
This study investigates the effect of cell phones on economic development and growth by performing an econometric analysis using data from the International Telecommunications Union and the Penn World Table. It discusses the various ways cell phones can make markets more efficient and how the diffusion of information andknowledge plays into development. Several approaches (OLS, Fixed Effects, 2SLS) were used to test over 20 econometric models. Overall, the mobile cellular subscriptions rate was found to have a positive and significant impact on countries’ level of real per capitaGDP and GDP growth rate. Furthermore, the study provides policy implications for the use of technology to promote global growth.
Resumo:
The history of mountain research is most fascinating. Three names for 3 centuries may give an idea of the growing knowledge about the world's mountains: Horace Bénédict de Saussure, who climbed and studied the Mont Blanc in 1787; Alexander von Humboldt, ever investigating the environment during his attempt to ascend the Chimborazo in 1802; and Carl Troll, who founded the International Geographical Union's Commission on High-altitude Geoecology in 1968. Awareness of the growing impact of human activities on the environment led to scientific and political initiatives at the global level, beginning in the 1970s. The Perth conference in 2010 has offered an opportunity to both look back on these developments and explore the future of the world's mountains in a time of rapidly growing “global change” problems and processes.
Resumo:
El objetivo principal de este Proyecto Fin de Grado es el estudio experimental de la atenuación, producida por las precipitaciones, en los enlaces Tierra – satélite en banda Ka. En particular, se ha realizado el estudio para una frecuencia de 19,701 GHz, que corresponde con la frecuencia de una de las balizas del satélite Hot Bird 13 de Eutelsat. Para la realización del estudio se dispone de datos experimentales recogidos por sondeos realizados en la estación meteorológica de Madrid - Barajas y de datos sinópticos. La primera parte del proyecto comienza con una descripción de los fundamentos teóricos de los distintos fenómenos que afectan a la propagación en un enlace por satélite, y se enumeran los distintos modelos de predicción más importantes. Posteriormente se describen en más detalle algunos modelos de predicción propuestos por la Unión Internacional de Telecomunicaciones (UIT). En la segunda parte del mismo se explica en detalle el proceso necesario para el procesado de los datos experimentales, con el fin de poder manejarlos de forma más sencilla a la hora de presentar los resultados pertinentes. En una tercera parte se recogen los resultados experimentales obtenidos para el caso de la altura de la isoterma a 0˚C y de la atenuación por lluvia. El capítulo dedicado al estudio de la altura de la isoterma a 0˚C se centra en obtener dicho dato a partir de los datos experimentales de los sondeos, que fueron procesados con anterioridad. Así mismo, se realizará una comparativa de estos datos experimentales con los proporcionados por la UIT en la Recomendación 839. En el capítulo dedicado al estudio de la atenuación producida por la lluvia se compararán los resultados obtenidos de forma experimental con los datos proporcionados por la UIT en la Recomendación 618. Por último se recoge en un capítulo las conclusiones obtenidas con la realización de este PFG y las líneas futuras de investigación. ABSTRACT. The main aim of this Final Degree Project is the experimental study of attenuation by precipitation, in links Earth – Ka band satellite. In particular, the study was performed at a frequency of 19.701 GHz, which corresponds to the frequency of one of the beacons of the satellite Hot Bird 13 (Eutelsat). There is experimental data and synoptic data provided, which was collected from surveys in the Madrid- Barajas weather station. The first part of the project outlines some theoretical foundations regarding different phenomena which affect propagation in a satellite link and includes the most important prediction models. Additionally, some prediction models proposed by the International Telecommunication Union (ITU) are outlined in detail. In the second part, the process for the processing of the experimental data is explained in detail. This process is necessary in order to be able to utilize the data more easily when presenting the results of this project. In the third part, the experimental results obtained in the study are presented for both cases: isotherm height at 0°C and rain attenuation. The chapter dedicated to the study of the isotherm height at 0°C focuses on obtaining the real isotherm height at 0°C from the experimental data processed previously. Furthermore, a comparison will be made between the experimental results and data proposed by ITU in Recommendation 839. The chapter dedicated to the study of rain attenuation focuses on making a comparison between the results from the experimental data and data proposed by ITU in Recommendation 618. Finally, there is a chapter which revises all the conclusions obtained throughout this project and provides recommendations for future research.
Resumo:
A suitable knowledge of the orientation and motion of the Earth in space is a common need in various fields. That knowledge has been ever necessary to carry out astronomical observations, but with the advent of the space age, it became essential for making observations of satellites and predicting and determining their orbits, and for observing the Earth from space as well. Given the relevant role it plays in Space Geodesy, Earth rotation is considered as one of the three pillars of Geodesy, the other two being geometry and gravity. Besides, research on Earth rotation has fostered advances in many fields, such as Mathematics, Astronomy and Geophysics, for centuries. One remarkable feature of the problem is in the extreme requirements of accuracy that must be fulfilled in the near future, about a millimetre on the tangent plane to the planet surface, roughly speaking. That challenges all of the theories that have been devised and used to-date; the paper makes a short review of some of the most relevant methods, which can be envisaged as milestones in Earth rotation research, emphasizing the Hamiltonian approach developed by the authors. Some contemporary problems are presented, as well as the main lines of future research prospected by the International Astronomical Union/International Association of Geodesy Joint Working Group on Theory of Earth Rotation, created in 2013.
Resumo:
At head of title: International Geographical Union. XVIIth International Geographical Congress, United States, 1952.