991 resultados para Internal waves.
Resumo:
In 1937 the "Meteor" performed the cruises of the first part of the "Deutsche Nordatlantische Expedition". This publication treats seven stations of three-day-anchoring occupied during that time, five of which are located on the shelf, one on the continental slope and one on a ridge between the Capverde islands. The Bohnecke current meter, an instrument developed for the expedition, is described briefly and it's accuracy studied by comparing the measurements of two instruments which operated simultaneously at the same depth. It is shown that it is very sensitive for movements of the anchored ship because of the very short measuring intervall (2 minutes). The influence of the ship's movements could not be eliminated completely, the mode of using the instrument at different depths being unsuitable for this. Considering the stratification the accuracy of it's representation by the mean temperature and salinity distributionis studied. It is shown that under certain conditions a distribution estimated from observed values gives more exact results. This especially applies to the TS-diagram. Station Meteor336, located on the shelf near Cape Juby, shows temperatures 4 °C less than the open ocean and so belongs to the area of upwelling. During the observation period, however, internal tides are prominent. The diurnal component is of considerable influence, the distinction from inertial oscillations (25.5 hours) not being possible, however. Station Meteor341, on the shelf off Spanish-Sahara, gives an excellent example of the movements in the centre of the area of upwelling. Changing it's direction by 45° at the beginning of the measurements, the wind causes a change of current direction at all depths which, after some inertial oscillations (period 28.3 hours), settles down to a final value. At the beginning and the end of the observations the current at the upper depths is directed off-shore, the angle between current and wind being 22°, while at the lower depths it is orientated towards the shore. The depth of the upper homogenous layer gives the origin of the water transported upwards When during the inertial oscillations the current goes offshore at all depths temporarily, a sudden disturbance occurs in the temperature measurements. Station Meteor311 is located similar to station Meteor341 but was occupied one month earlier. At that time the wind situation was unnormal, the usual wind direction of 45° occuring at the end of the station. Therefore an unnormally high vertical shear of current speed and direction has been observed, the current vector being directed off-shore at the surface and near the bottom, towards the coast inbetween. The TS-diagram shows that the bottom water is replaced first so that upwelling does not occur during observation time. The state reached at the end of the station does not seem to be stable. Station Meteor369, on the continental slope, is governed by internal waves. Besides the internal tide of 12.4 hours a wave of 6.5 hour period is observed, being possibly amplified by the large bottom slope. In 40 - 60 m depth, where the thermocline is located, a wave with 3.3 hour period is observed which is argued to be an internal boundary wave. Station Meteor334 is located on the shelf NW of the mouth of the Senegal river. A marked temperature stratification, associated with large disturbances, and nearly constant salinity have been found there. The current was going slowly towards S or SW in the upper 20 - 30 m, towards N underneath. At the boundary of the current systems intense turbulence developed,including as it seems a water type of less salinity which is transported from the Senegal river by the lower current. Station Meteor327, located at 100 m depth between two of the Capverde islands, shows oceanic characteristics. The semidiurnal tide is found mainly, the diurnal component having considerable influence. Furtheron an internal wave of 6 hour period is seen the maximum amplitude of which is moving slowly downwards. Two possibilities of explaining it are discussed. Station Meteor366 is found in the area of ceasing winds off the coast of upper Guinea. The temperature there depends strongly on the depth, the salinity being nearly constant. The currents are divided into an upper and a lower system with large variations in both of them. A change of wind direction of nearly 90° is supposed to be the reason. The variations in salinity accordingly are interpreted as the influence of fresh water outflow from land which is felt in a different way at different wind directions. In the last section the daily changes in air and water temperature are studied. The upwelling having large influence on these, a centre of the area of upwelling can be located at about 100 miles north of Cape Blanc (Station Meteor311). The semidiurnal tidal component is compared with previous results for the Atlantic Ocean yielding considerable differences for the direction and time of occurence of the current maximum which might be due to the topographical influences around the shelf.
Resumo:
Hydrothermal emission of mantle helium appears to be directly related to magma production rate, but other processes can generate methane and hydrogen on mid-ocean ridges. In an on-going effort to characterize these processes in the South Atlantic, the flux and distribution of these gases were investigated in the vicinity of a powerful black smoker recently discovered at 8°17.9' S, 13°30.4' W. The vent lies on the shoulder of an oblique offset in the Mid-Atlantic Ridge and discharges high concentrations of methane and hydrogen. Measurements during expeditions in 2004 and 2006 show that the ratio of CH4 to 3He in the neutrally buoyant plume is quite high, 4 x 10**8. The CTD stations were accompanied by velocity measurements with lowered acoustic Doppler current profilers (LADCP), and from these data we estimate the methane transport to have been 0.5 mol/sec in a WSW-trending plume that seems to develop during the ebb tidal phase. This transport is an order of magnitude greater than the source of CH4 calculated from its concentration in the vent fluid and the rise height of the plume. From this range of methane fluxes, the source of 3He is estimated to be between 0.14 and 1.2 nmol/sec. In either case, the 3He source is significantly lower than expected from the spreading rate of the Mid-Atlantic Ridge. From the inventory of methane in the rift valley adjacent to the vent, it appears that the average specific rate of oxidation is 2.6 to 23/yr, corresponding to a turnover time between 140 and 16 days. Vertical profiles of methane in the surrounding region often exhibited Gaussian-like distributions, and the variances appear to increase with distance from the vent. Using a Gaussian plume model, we obtained a range of vertical eddy diffusivities between 0.009 and 0.08 m2m2/sec. These high values may be due to tidally driven internal waves across the promontory on which the vent is located.
Resumo:
Marine biological productivity has been invoked as a possible climate driver during the early Paleogene through its potential influence on atmospheric carbon dioxide concentrations. However, the relationship of export productivity (the flux of organic carbon (C) from the surface ocean to the deep ocean) to organic C burial flux (the flux of organic C from the deep ocean that is buried in marine sediments) is not well understood. We examine the various components involved with atmosphere-to-ocean C transfer by reconstructing early Paleogene carbonate and silica production (using carbonate and silica mass accumulation rates (MARs)); export productivity (using biogenic barium (bio-Ba) MARs); organic C burial flux (using reactive phosphorus (P) MARs); redox conditions (using uranium and manganese contents); and the fraction of organic C buried relative to export productivity (using reactive P to bio-Ba ratios). Our investigations concentrate on Paleocene/Eocene sections of Sites 689/690 from Maud Rise and Site 738 from Kerguelen Plateau. In both regions, export productivity, organic C burial flux, and the fraction of organic C buried relative to export productivity decreased from the Paleocene/early Eocene to the middle Eocene. A shift is indicated from an early Paleogene two-gyre circulation in which nutrients were not efficiently recycled to the surface via upwelling in these regions, to a circulation more like the present day with efficient recycling of nutrients to the surface ocean. Export productivity was enhanced for Kerguelen Plateau relative to Maud Rise throughout the early Paleogene, possibly due to internal waves generated by the plateau regardless of gyre circulation.
Resumo:
The physical (temperature, salinity, velocity) and biogeochemical (oxygen, nitrate) structure of an oxygen depleted coherent, baroclinic, anticyclonic mode-water eddy (ACME) is investigated using high-resolution autonomous glider and ship data. A distinct core with a diameter of about 70 km is found in the eddy, extending from about 60 to 200 m depth and. The core is occupied by fresh and cold water with low oxygen and high nitrate concentrations, and bordered by local maxima in buoyancy frequency. Velocity and property gradient sections show vertical layering at the flanks and underneath the eddy characteristic for vertical propagation (to several hundred-meters depth) of near inertial internal waves (NIW) and confirmed by direct current measurements. A narrow region exists at the outer edge of the eddy where NIW can propagate downward. NIW phase speed and mean flow are of similar magnitude and critical layer formation is expected to occur. An asymmetry in the NIW pattern is seen that possible relates to the large-scale Ekman transport interacting with ACME dynamics. NIW/mean flow induced mixing occurs close to the euphotic zone/mixed layer and upward nutrient flux is expected and supported by the observations. Combing high resolution nitrate (NO3-) data with the apparent oxygen utilization (AOU) reveals AOU:NO3- ratios of 16 which are much higher than in the surrounding waters (8.1). A maximum NO3- deficit of 4 to 6 µmol kg-1 is estimated for the low oxygen core. Denitrification would be a possible explanation. This study provides evidence that the recycling of NO3-, extracted from the eddy core and replenished into the core via the particle export, may quantitatively be more important. In this case, the particulate phase is of keys importance in decoupling the nitrogen from the oxygen cycling.