877 resultados para Intelligent diagnostics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the possibility of using an adaptive tutoring system for beginning programming students. The work involved, designing, developing and evaluating such a system and showing that it was effective in increasing the students’ test scores. In doing so, Artificial Intelligence techniques were used to analyse PHP programs written by students and to provide feedback based on any specific errors made by them. Methods were also included to provide students with the next best exercise to suit their particular level of knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Smart Fields programme has been active in Shell over the last decade and has given large benefits. In order to understand the value and to underpin strategies for the future implementation programme, a study was carried out to quantify the benefits to date. This focused on actually achieved value, through increased production or lower costs. This provided an estimate of the total value achieved to date. Future benefits such as increased reserves or continued production gain were recorded separately. The paper describes the process followed in the benefits quantification. It identifies the key solutions and technologies and describes the mechanism used to understand the relation between solutions and value. Examples have been given of value from various assets around the world, in both existing fields and in green fields. Finally, the study provided the methodology for tracking of value. This helps Shell to estimate and track the benefits of the Smart Fields programme at company scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of rolling element bearing diagnostics envelope analysis, and in particular the squared envelope spectrum, have gained in the last years a leading role among the different digital signal processing techniques. The original constraint of constant operating speed has been relaxed thanks to the combination of this technique with the computed order tracking, able to resample signals at constant angular increments. In this way, the field of application of squared envelope spectrum has been extended to cases in which small speed fluctuations occur, maintaining the effectiveness and efficiency that characterize this successful technique. However, the constraint on speed has to be removed completely, making envelope analysis suitable also for speed and load transients, to implement an algorithm valid for all the industrial application. In fact, in many applications, the coincidence of high bearing loads, and therefore high diagnostic capability, with acceleration-deceleration phases represents a further incentive in this direction. This paper is aimed at providing and testing a procedure for the application of envelope analysis to speed transients. The effect of load variation on the proposed technique will be also qualitatively addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostics is based on the characterization of mechanical system condition and allows early detection of a possible fault. Signal processing is an approach widely used in diagnostics, since it allows directly characterizing the state of the system. Several types of advanced signal processing techniques have been proposed in the last decades and added to more conventional ones. Seldom, these techniques are able to consider non-stationary operations. Diagnostics of roller bearings is not an exception of this framework. In this paper, a new vibration signal processing tool, able to perform roller bearing diagnostics in whatever working condition and noise level, is developed on the basis of two data-adaptive techniques as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED), coupled by means of the mathematics related to the Hilbert transform. The effectiveness of the new signal processing tool is proven by means of experimental data measured in a test-rig that employs high power industrial size components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of diagnostics of rolling element bearings, the development of sophisticated techniques, such as Spectral Kurtosis and 2nd Order Cyclostationarity, extended the capability of expert users to identify not only the presence, but also the location of the damage in the bearing. Most of the signal-analysis methods, as the ones previously mentioned, result in a spectrum-like diagram that presents line frequencies or peaks in the neighbourhood of some theoretical characteristic frequencies, in case of damage. These frequencies depend only on damage position, bearing geometry and rotational speed. The major improvement in this field would be the development of algorithms with high degree of automation. This paper aims at this important objective, by discussing for the first time how these peaks can draw away from the theoretical expected frequencies as a function of different working conditions, i.e. speed, torque and lubrication. After providing a brief description of the peak-patterns associated with each type of damage, this paper shows the typical magnitudes of the deviations from the theoretical expected frequencies. The last part of the study presents some remarks about increasing the reliability of the automatic algorithm. The research is based on experimental data obtained by using artificially damaged bearings installed in a gearbox.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning programming is known to be difficult. One possible reason why students fail programming is related to the fact that traditional learning in the classroom places more emphasis on lecturing the material instead of applying the material to a real application. For some students, this teaching model may not catch their interest. As a result they may not give their best effort to understand the material given. Seeing how the knowledge can be applied to real life problems can increase student interest in learning. As a consequence, this will increase their effort to learn. Anchored learning that applies knowledge to solve real life problems may be the key to improving student performance. In anchored learning, it is necessary to provide resources that can be accessed by the student as they learn. These resources can be provided by creating an Intelligent Tutoring System (ITS) that can support the student when they need help or experience a problem. Unfortunately, there is no ITS developed for the programming domain that has incorporated anchored learning in its teaching system. Having an ITS that supports anchored learning will not only be able to help the student learn programming effectively but will also make the learning process more enjoyable. This research tries to help students learn C# programming using an anchored learning ITS named CSTutor. Role playing is used in CSTutor to present a real world situation where they develop their skills. A knowledge base using First Order Logic is used to represent the student's code and to give feedback and assistance accordingly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The University of Queensland (UQ) has extensive laboratory facilities associated with each course in the undergraduate electrical engineering program. The laboratories include machines and drives, power systems simulation, power electronics and intelligent equipment diagnostics. A number of postgraduate coursework programs are available at UQ and the courses associated with these programs also use laboratories. The machine laboratory is currently being renovated with i-lab style web based experimental facilities, which could be remotely accessed. Senior level courses use independent projects using laboratory facilities and this is found to be very useful to improve students' learning skill. Laboratory experiments are always an integral part of a course. Most of the experiments are conducted in a group of 2-3 students and thesis projects in BE and major projects in ME are always individual works. Assessment is done in-class for the performance and also for the report and analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the legal domain, it is rare to find solutions to problems by simply applying algorithms or invoking deductive rules in some knowledge‐based program. Instead, expert practitioners often supplement domain‐specific knowledge with field experience. This type of expertise is often applied in the form of an analogy. This research proposes to combine both reasoning with precedents and reasoning with statutes and regulations in a way that will enhance the statutory interpretation task. This is being attempted through the integration of database and expert system technologies. Case‐based reasoning is being used to model legal precedents while rule‐based reasoning modules are being used to model the legislation and other types of causal knowledge. It is hoped to generalise these findings and to develop a formal methodology for integrating case‐based databases with rule‐based expert systems in the legal domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intelligent Transport System (ITS) technology is seen as a cost-effective way to increase the conspicuity of approaching trains and the effectiveness of train warnings at level crossings by providing an in-vehicle warning of an approaching train. The technology is often seen as a potential low-cost alternative to upgrading passive level crossings with traditional active warning systems (flashing lights and boom barriers). ITS platforms provide sensor, localization and dedicated short-range communication (DSRC) technologies to support cooperative applications such as collision avoidance for road vehicles. In recent years, in-vehicle warning systems based on ITS technology have been trialed at numerous locations around Australia, at level crossing sites with active and passive controls. While significant research has been conducted on the benefits of the technology in nominal operating modes, little research has focused on the effects of the failure modes, the human factors implications of unreliable warnings and the technology adoption process from the railway industry’s perspective. Many ITS technology suppliers originate from the road industry and often have limited awareness of the safety assurance requirements, operational requirements and legal obligations of railway operators. This paper aims to raise awareness of these issues and start a discussion on how such technology could be adopted. This paper will describe several ITS implementation cenarios and discuss failure modes, human factors considerations and the impact these scenarios are likely to have in terms of safety, railway safety assurance requirements and the practicability of meeting these requirements. The paper will identify the key obstacles impeding the adoption of ITS systems for the different implementation scenarios and a possible path forward towards the adoption of ITS technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces an integral approach to the study of plasma-surface interactions during the catalytic growth of selected nanostructures (NSs). This approach involves basic understanding of the plasma-specific effects in NS nucleation and growth, theoretical modelling, numerical simulations, plasma diagnostics, and surface microanalysis. Using an example of plasma-assisted growth of surface-supported single-walled carbon nanotubes, we discuss how the combination of these techniques may help improve the outcomes of the growth process. A specific focus here is on the effects of nanoscale plasma-surface interactions on the NS growth and how the available techniques may be used, both in situ and ex situ to optimize the growth process and structural parameters of NSs.