959 resultados para Integrable equations in Physics
Resumo:
We present a mathematical analysis of the asymptotic preserving scheme proposed in [M. Lemou and L. Mieussens, SIAM J. Sci. Comput., 31 (2008), pp. 334-368] for linear transport equations in kinetic and diffusive regimes. We prove that the scheme is uniformly stable and accurate with respect to the mean free path of the particles. This property is satisfied under an explicitly given CFL condition. This condition tends to a parabolic CFL condition for small mean free paths and is close to a convection CFL condition for large mean free paths. Our analysis is based on very simple energy estimates. © 2010 Society for Industrial and Applied Mathematics.
Resumo:
Background. Kidney Disease Outcomes Quality Initiative (KDOQI) chronic kidney disease (CKD) guidelines have focused on the utility of using the modified four-variable MDRD equation (now traceable by isotope dilution mass spectrometry IDMS) in calculating estimated glomerular filtration rates (eGFRs). This study assesses the practical implications of eGFR correction equations on the range of creatinine assays currently used in the UK and further investigates the effect of these equations on the calculated prevalence of CKD in one UK region Methods. Using simulation, a range of creatinine data (30–300 µmol/l) was generated for male and female patients aged 20–100 years. The maximum differences between the IDMS and MDRD equations for all 14 UK laboratory techniques for serum creatinine measurement were explored with an average of individual eGFRs calculated according to MDRD and IDMS 30 ml/min/1.73 m2. Observed data for 93,870 patients yielded a first MDRD eGFR 3 months later of which 47 093 (71%) continued to have an eGFR
Resumo:
We construct $x^0$ in ${\Bbb R}^{\Bbb N}$ and a row-finite matrix $T=\{T_{i,j}(t)\}_{i,j\in\N}$ of polynomials of one real variable $t$ such that the Cauchy problem $\dot x(t)=T_tx(t)$, $x(0)=x^0$ in the Fr\'echet space $\R^\N$ has no solutions. We also construct a row-finite matrix $A=\{A_{i,j}(t)\}_{i,j\in\N}$ of $C^\infty(\R)$ functions such that the Cauchy problem $\dot x(t)=A_tx(t)$, $x(0)=x^0$ in ${\Bbb R}^{\Bbb N}$ has no solutions for any $x^0\in{\Bbb R}^{\Bbb N}\setminus\{0\}$. We provide some sufficient condition of solvability and of unique solvability for linear ordinary differential equations $\dot x(t)=T_tx(t)$ with matrix elements $T_{i,j}(t)$ analytically dependent on $t$.
Resumo:
According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.
Resumo:
We construct a bounded function $H : l_2\times l_2 \to R$ with continuous Frechet derivative such that for any $q_0\in l_2$ the Cauchy problem $\dot p= - {\partial H\over\partial q}$, $\dot q={\partial H\over\partial p}$, $p(0) = 0$, q(0) = q_0$ has no solutions in any neighborhood of zero in R.
Resumo:
Let $\Gamma$ be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem $\dot x = Ax$, $x(0) = x_0$ with respect to functions $x: R\to E$. It is proved that if $E\in \Gamma$, then $E\times R^A$ is-an-element-of $\Gamma$ for an arbitrary set $A$. It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to $\omega$, does not belong to $\Gamma$.
Resumo:
An education in Physics develops both strong cognitive and practical skills. These are well-matched to the needs of employers, from engineering to banking. Physics provides the foundation for all engineering and scientific disciplines including computing technologies, aerospace, communication, and also biosciences and medicine. In academe, Physics addresses fundamental questions about the universe, the nature of reality, and of the complex socio-economic systems comprising our daily lives. Yet today, there are emerging concerns about Physics education: Secondary school interest in Physics is falling, as is the number of Physics school teachers. There is clearly a crisis in physics education; recent research has identified principal factors. Starting from a review of these factors, and from recommendations of professional bodies, this paper proposes a novel solution – the use of Computer Games to teach physics to school children, to university undergraduates and to teacher-trainees.
Resumo:
Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.
Resumo:
Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.
Resumo:
A detailed study of the electronic structure and bonding of the pentahalides of group 5 elements V, Nb, Ta, and element 105, hahnium (and Pa) has been carried out using relativistic molecular cluster Dirac-Slater discrete-variational method. A number of calculations have been performed for different geometries and molecular bond distances. The character of the bonding has been analyzed using the Mulliken population analysis of the molecular orbitals. It is shown that hahnium is a typical group 5 element. In a great number of properties it continues trends in the group. Some peculiarities in the electronic structure of HaCl_5 result from relativistic effects.
Resumo:
Relativistic self-consistent charge Dirac-Slater discrete variational method calculations have been done for the series of molecules MBr_5, where M = Nb, Ta, Pa, and element 105, Ha. The electronic structure data show that the trends within the group 5 pentabromides resemble those for the corresponding pentaclorides with the latter being more ionic. Estimation of the volatility of group 5 bromides has been done on the basis of the molecular orbital calculations. According to the results of the theoretical interpretation HaBr_5 seems to be more volatile than NbBr_5 and TaBr_5.
Resumo:
Electronic structures of MOCl_3 and MOBr_3 molecules, where M = V, Nb, Ta, Pa, and element 105, hahnium, have been calculated using the relativistic Dirac-Slater discrete variational method. The character of bonding has been analyzed using the Mulliken population analysis of the molecular orbitals. It was shown that hahnium oxytrihalides have similar properties to oxytrihalides of Nb and Ta and that hahnium has the highest tendency to form double bond with oxygen. Some peculiarities in the electronic structure of HaOCl_3 and HaOBr_3 result from relativistic effects. Volatilities of the oxytrihalides in comparison with the corresponding pentahalides were considered using results of the present calculations. Higher ionic character and lower covalency as well as the presence of dipole moments in MOX_3 (X = Cl, Br) molecules compared to analogous MX_5 ones are the factors contributing to their lower volatilities.
Resumo:
Results of relativistic (Dirac-Slater and Dirac-Fock) and nonrelativistic (Hartree-Fock-Slater) atomic and molecular calculations have been compared for the group 5 elements Nb, Ta, and Ha and their compounds MCl_5, to elucidate the influence of relativistic effects on their properties especially in going from the 5d element Ta to the 6d element Ha. The analysis of the radial distribution of the valence electrons of the metals for electronic configurations obtained as a result of the molecular calculations and their overlap with ligands show opposite trends in behavior for ns_1/2, np_l/2, and (n -1 )d_5/2 orbitals for Ta and Ha in the relativistic and nonrelativistic cases. Relativistic contraction and energetic stabilization of the ns_1/2 and np_l/2 wave functions and expansion and destabilization of the (n-1)d_5/2 orbitals make hahnium pentahalide more covalent than tantalum pentahalide and increase the bond strength. The nonrelativistic treatment of the wave functions results in an increase in ionicity of the MCl_5 molecules in going from Nb to Ha making element Ha an analog of V. Different trends for the relativistic and nonrelativistic cases are also found for ionization potentials, electronic affinities, and energies of charge-transfer transitions as well as the stability of the maximum oxidation state.