982 resultados para Integrable Field Theories
Resumo:
The Lagrangian formalism for the N = 2 supersymmetric sinh-Gordon model with a jump defect is considered. The modified conserved momentum and energy are constructed in terms of border functions. The supersymmetric Backlund transformation is given and an one-soliton solution is obtained.The Lax formulation based on the affine super Lie algebra sl(2, 2) within the space split by the defect leads to the integrability of the model and henceforth to the existence of an infinite number of constants of motion.
Resumo:
We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper we discuss the Lax formulation of the Grassmannian and Bosonic Thirring models in the presence of jump defects. For the Grassmannian case, the defect is described by Backlund transformation which is responsible for preserving the integrability of the model. We then propose an extension of the Backlund transformation for the Bosonic Thirring model which is verified by some Backlund transitions like vacuum-one soliton, one soliton-one soliton, one soliton-two solitons and two solitons-two solitons. The Lax formulation within the space split by the defect leads to the integrability of Bosonic Thirring model with jump defects.
Resumo:
We review two-dimensional QCD. We start with the field theory aspects since 't Hooft's 1/N expansion, arriving at the non-Abelian bosonization formula, coset construction and gauge-fixing procedure. Then we consider the string interpretation, phase structure and the collective coordinate approach. Adjoint matter is coupled to the theory, and the Landau-Ginzburg generalization is analysed. We end with considerations concerning higher algebras, integrability, constraint structure, and the relation of high-energy scattering of hadrons with two-dimensional (integrable) field theories.
Resumo:
We use ideas on integrability in higher dimensions to define Lorentz invariant field theories with an infinite number of local conserved currents. The models considered have a two-dimensional target space. Requiring the existence of lagrangean and the stability of static solutions singles out a class of models which have an additional conformal symmetry. That is used to explain the existence of an ansatz leading to solutions with non-trivial Hopf charges. © SISSA/ISAS 2002.
Resumo:
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.
Resumo:
We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.
Resumo:
We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the classical integrability of the Alday-Arutyunov-Frolov model, and show that the Lax connection can be reduced to a simpler 2 x 2 representation. Based on this result, we calculate the algebra between the L-operators and find that it has a highly non-ultralocal form. We then employ and make a suitable generalization of the regularization technique proposed by Mail let for a simpler class of non-ultralocal models, and find the corresponding r- and s-matrices. We also make a connection between the operator-regularization method proposed earlier for the quantum case, and the Mail let's symmetric limit regularization prescription used for non-ultralocal algebras in the classical theory.