957 resultados para Insulin-like growth factor-I
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.
Resumo:
In mammals, one of the major actions of insulin-like growth factor I (IGF-I) is to increase skeletal growth by stimulating new cartilage formation. IGF-I stimulates chondrocytes in vitro to synthesize new cartilage matrix, measured by enhanced uptake of 35S-sulfate, but the addition of insulin does not produce a similar effect except when added at high concentrations. However, recent studies have shown that, in teleosts, both insulin and IGF-I are potent activators of 35S-sulfate uptake in gill cartilage. To further characterize the growth-promoting activities of these hormones in fish, we have used reverse transcriptase-linked PCR to analyze the expression of insulin receptor family genes in salmon gill cartilage. Partial cDNA sequences encoding the tyrosine kinase domains from six distinct members of the IR gene family were obtained, and sequence comparisons revealed that four of the cDNAs encoded amino acid sequences that were highly homologous to human IR whereas the encoded sequences from two of the cDNAs were more similar to the human type I IGF receptor (IGF-R). Furthermore, a comparative reverse transcriptase-linked PCR assay revealed that the four putative IR mRNAs expressed in toto in gill cartilage were 56% of that found in liver whereas the expressed amount of the two IGF-R mRNAs was 9-fold higher compared with liver. These results suggest that the chondrogenic actions of insulin and IGF-I in fish are mediated by the ligands binding to their cognate receptors. However, further studies will be required to characterize the binding properties and relative contribution of the individual IR and IGF-R genes.
Resumo:
After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.
Resumo:
Smooth muscle cells (SMCs) have been shown to migrate in response to insulin-like growth factor I (IGF-I). However, the mechanism mediating this response has not been determined. The migration rates of porcine and human vascular SMCs were assessed in a monolayer wounding assay. IGF-I and IGF-II induced increases of 141% and 97%, respectively, in the number of cells that migrated in 4 days. The presence of 0.2% fetal bovine serum in the culture medium was necessary for the IGFs to stimulate migration over uncoated plastic surfaces. However, if vitronectin was used as the substratum, IGF-I stimulated migration by 162% even in the absence of serum. To determine the role of integrins in mediating this migration, SMC surface proteins were labeled with 125I and immunoprecipitated with specific anti-integrin antibodies. Integrins containing alpha-V (vitronectin receptor), alpha5 (fibronectin receptor), and alpha3 (collagen/laminin receptor) subunits were the most abundant. IGF-I treatment caused a 73% reduction in alpha5-integrin subunit protein and a 25% increase in alpha-V subunit. More importantly, ligand binding of alpha-V-beta3 was increased by 2.4-fold. We therefore examined whether the function of the alpha-V-beta3 integrin was important for IGF-I-mediated migration. The disintegrin kistrin was shown by affinity crosslinking to specifically bind with high affinity to alpha-V-beta3 and not to alpha5-beta1 or other abundant integrins. The related disintegrin echistatin specifically inhibited 125I-labeled kistrin binding to alpha-V-beta3, while a structurally distinct disintegrin, decorsin, had 1000-fold lower affinity. The addition of increasing concentrations of either kistrin or echistatin inhibited IGF-I-induced migration, whereas decorsin had a minimal effect. The potency of these disintegrins in inhibiting IGF-I-induced migration paralleled their apparent affinity for the alpha-V integrin. Furthermore, an alpha-V-beta3 blocking antibody inhibited SMC migration by 80%. In summary, vitronectin receptor activation is a necessary component of IGF-I-mediated stimulation of smooth muscle migration, and alpha-V-beta3 integrin antagonists appear to be important reagents for modulating this process.
Resumo:
There is increasing evidence that activation of the insulin-like growth factor I (IGF-I) receptor plays a major role in the control of cellular proliferation of many cell types. We studied the mitogenic effects of IGF-I, IGF-II, and epidermal growth factor (EGF) on growth-arrested HT-3 cells, a human cervical cancer cell line. All three growth factors promoted dose-dependent increases in cell proliferation. In untransformed cells, EGF usually requires stimulation by a "progression" factor such as IGF-I, IGF-II, or insulin (in supraphysiologic concentrations) in order to exert a mitogenic effect. Accordingly, we investigated whether an autocrine pathway involving IGF-I or IGF-II participated in the EGF-induced mitogenesis of HT-3 cells. With the RNase protection assay, IGF-I mRNA was not detected. However, IGF-II mRNA increased in a time-dependent manner following EGF stimulation. The EGF-induced mitogenesis was abrogated in a dose-dependent manner by IGF-binding protein 5 (IGFBP-5), which binds to IGF-II and neutralizes it. An antisense oligonucleotide to IGF-II also inhibited the proliferative response to EGF. In addition, prolonged, but not short-term, stimulation with EGF resulted in autophosphorylation of the IGF-I receptor, and coincubations with both EGF and IGFBP-5 attenuated this effect. These data demonstrate that autocrine secretion of IGF-II in HT-3 cervical cancer cells can participate in EGF-induced mitogenesis and suggest that autocrine signals involving the IGF-I receptor occur "downstream" of competence growth factor receptors such as the EGF receptor.
Resumo:
Augmentation of vertebrate growth by growth hormone (GH) is primarily due to its regulation of insulin-like growth factor I (IGF I) and IGF II levels. To characterize the effect of GH on the levels of IGF I and IGF II mRNA in a teleost, 10 micrograms of bovine GH (bGH) per g of body weight was administered to juvenile rainbow trout (Oncorhynchus mykiss) through i.p. injection. The levels of IGF I and IGF II mRNA were determined simultaneously, by using RNase protection assays, in the liver, pyloric ceca, kidney, and gill at 0, 1, 3, 6, 12, 24, 48, and 72 hr after injection. In the liver, IGF I mRNA levels were significantly elevated at 6 and 12 hr (approximately 2- to 3-fold, P < or = 0.01), while IGF II mRNA levels were significantly elevated at 3 and 6 hr (approximately 3-fold, P < or = 0.01). In the pyloric ceca, IGF II mRNA levels were significantly elevated at 12, 24, and 48 hr (approximately 3-fold, P < or = 0.01), while IGF I mRNA was below the limits of assay accuracy. GH-dependent IGF mRNA appearance was not detected in the gill and kidney. Serum bGH levels, determined by using a radioimmunoassay, were significantly elevated at 3 and 6 hr (P < 0.005). In primary hepatocyte culture, IGF I and IGF II mRNA levels increased in a bGH dose-dependent fashion, with ED50 values of approximately 45 and approximately 6 ng of bGH per ml, respectively. The GH-dependent appearance of IGF II mRNA in the liver and pyloric ceca suggests important roles for this peptide hormone exclusive of IGF I.
Resumo:
Adjuvant-induced arthritis in rats is associated with growth failure, hypermetabolism and accelerated protein breakdown. The aim of this work was to study the effects of adjuvant-induced arthritis on GH and insulin-like growth factor-I (IGF-I). Arthritis was induced by an intradermal injection of complete Freund's adjuvant and rats were killed 18 and 22 days later. IGF-I and GH levels were measured by radioimmunoassay. Pituitary GH mRNA was analyzed by northern blot and IGF binding proteins (IGFBPs) by western blot. Arthritic rats showed a decrease in both serum and hepatic concentrations of IGF-I. On the contrary, arthritis increased the circulating IGFBPs. The serum concentration of IGF-I in the arthritic rats was negatively correlated with the body weight loss observed in these animals. Arthritis decreased the serum concentration of GH and this decrease seems to be due to an inhibition of GH synthesis, since pituitary GH mRNA content was decreased in arthritic rats (p<0.01). These data suggest that the decrease in body weight gain in arthritic rats may be, at least in part, secondary to the decrease in GH and IGF-I secretion. Furthermore, the increased serum IGFBPs may also be involved in the disease process.
Resumo:
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoid malignancy representing 5-10% of all non-Hodgkin’s lymphomas. It is distinguished by the t(11;14)(q13;q32) chromosomal translocation that juxtaposes the proto-oncogene CCND1, which encodes cyclin D1 at 11q13 to the IgH gene at 14q32. MCL patients represent about 6% of all new cases of Non-Hodgkin’s lymphomas per year or about 3,500 new cases per year. MCL occurs more frequently in older adults – the average age at diagnosis is the mid-60s with a male-to-female ratio of 2-3:1. It is typically characterized by the proliferation of neoplastic B-lymphocytes in the mantle zone of the lymph node follicle that have a prominent inclination to disseminate to other lymphoid tissues, bone marrow, peripheral blood and other organs. MCL patients have a poor prognosis because they develop resistance/relapse to current non-specific therapeutic regimens. It is of note that the exact molecular mechanisms underlying the pathogenesis of MCL are not completely known. It is reasonable to anticipate that better characterization of these mechanisms could lead to the development of specific and likely more effective therapeutics to treat this aggressive disease. The type I insulin-like growth factor receptor (IGF-IR) is thought to be a key player in several different solid malignancies such as those of the prostate, breast, lung, ovary, skin and soft tissue. In addition, recent studies in our lab showed evidence to support a pathogenic role of IGF-IR in some types of T-cell lymphomas and chronic myeloid leukemia. Constitutively active IGF-IR induces its oncogenic effects through the inhibition of apoptosis and induction of transformation, metastasis, and angiogenesis. Previous studies have shown that signaling through IGF-IR leads to the vi activation of multiple signaling transduction pathways mediated by the receptor-associated tyrosine kinase domain. These pathways include PI3K/Akt, MAP kinase, and Jak/Stat. In the present study, we tested the possible role of IGF-IR in MCL. Our results demonstrate that IGF-IR is over-expressed in mantle cell lymphoma cell lines compared with normal peripheral blood B- lymphocytes. Furthermore, inhibition of IGF-IR by the cyclolignan picropodophyllin (PPP) decreased cell viability and cell proliferation in addition to induction of apoptosis and G2/M cell cycle arrest. Screening of downstream oncogenes and apoptotic proteins that are involved in both IGF-IR and MCL signaling after treatment with PPP or IGF-IR siRNA showed significant alterations that are consistent with the cellular changes observed after PPP treatment. Therefore, our findings suggest that IGF-IR signaling contributes to the survival of MCL and thus may prove to be a legitimate therapeutic target in the future.
Resumo:
Brain metastasis is a common cause of mortality in cancer patients. Approximately 20-30% of breast cancer patients acquire brain metastasis, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF- IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that the IGF-IR signaling axis is constitutively active in brain-seeking sublines of breast cancer cells, driving an increase in in vitro metastatic properties. We demonstrate that IGF-IR signaling is activated in an autocrine manner as a result of IGFBP3 overexpression in brain-seeking cells. Transient and stable knockdown of IGF-IR results in a downregulation of IGF-IR downstream signaling through phospho-AKT, as well as decreased in vitro migration and invasion of MDA- MB-231Br brain-seeking cells. Using an in vivo experimental brain metastasis model, we show that IGF-IR ablation attenuates the establishment of brain metastases and prolongs survival. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.
Resumo:
Prostate carcinoma is the second leading cause of death from malignancy in men in the United States. Prostate cancer cells express type I insulin-like growth factor receptor (IGF-IR) and prostate cancer selectively metastazises to bone, which is an environment rich in insulin-like growth factors (IGFs), thereby supporting a paracrine action for cancer cell proliferation. We asked whether the IGF-IR is coupled to tumorigenicity and invasion of prostate cancer. When rat prostate adenocarcinoma cells (PA-III) were stably transfected with an antisense IGF-IR expression construct containing the ZnSO4-inducible metallothionein-1 transcriptional promoter, the transfectants expressed high levels of IGF-IR antisense RNA after induction with ZnSO4, which resulted in dramatically reduced levels of endogenous IGF-IR mRNA. A significant reduction in expression both of tissue-type plasminogen activator and of urokinase-type plasminogen activator occurred in PA-III cells accompanying inhibition of IGF-IR. Subcutaneous injection of either nontransfected PA-III or PA-III cells transfected with vector minus the IGF-IR insert into nude mice resulted in large tumors after 4 weeks. However, mice injected with IGF-IR antisense-transfected PA-III cells either developed tumors 90% smaller than controls or remained tumor-free after 60 days of observation. When control-transfected PA-III cells were inoculated over the abraded calvaria of nude mice, large tumors formed with invasion of tumor cells into the brain parenchyma. In contrast, IGF-IR antisense transfectants formed significantly smaller tumors with no infiltration into brain. These results indicate an important role for the IGF/IGF-IR pathway in metastasis and provide a basis for targeting IGF-IR as a potential treatment for prostate cancer.
Resumo:
Our data suggest that serum concentrations of insulin-like growth factor I and insulin-like growth factor binding protein 3 do not correlate with breast cancer development. (Fertil Steril (R) 2011;95:2753-5. (C)2011 by American Society for Reproductive Medicine.)
Resumo:
Association between insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD) has been reported. This prompted us to evaluate the power of the insulin sensitivity index (ISI) in association with IGFBP-1 to identify IR early in obese children/adolescents. OGTT was performed in 34 obese/overweight children/adolescents. Glucose, insulin and IGFBP-1 were measured in serum samples and ISI was calculated. Considering the presence of three or more risk factors for IR as a criterion for IR, ISI <4.6 showed 87.5% sensitivity and 94.5% specificity in diagnosing IR. IGFBP-1 was lower in the group with ISI <4.6 (p <0.01). In this group, three patients had higher than expected IGFBP-1, suggesting hepatic IR, while three patients with ISI >4.6 showed very low IGFBP-1 levels. Conclusion: ISI <4.6 is a good indicator of early peripheral IR and, associated with IGFBP-1, can identify increased risk of hepatic IR. Low IGFBP-1 levels among non-IR children may indicate increased portal insulin levels.
Resumo:
Context: Genetic factors that influence the response to recombinant human GH (rhGH) therapy remain mostly unknown. To date, only the GH receptor gene has been investigated. Objective: The aim of the study was to assess the influence of a polymorphism in the IGF-binding protein-3 (IGFBP-3) promoter region (-202 A/C) on circulating IGFBP-3 levels and growth response to rhGH therapy in children with GH deficiency (GHD). Design and Patients: -202 A/C IGFBP3 genotyping (rs2854744) was correlated with data of 71 children with severe GHD who remained prepubertal during the first year of rhGH treatment. Main Outcome Measures: We measured IGFBP-3 levels and first year growth velocity (GV) during rhGH treatment. Results: Clinical and laboratory data at the start of treatment were indistinguishable among patients with different -202 A/C IGFBP3 genotypes. Despite similar rhGH doses, patients homozygous for the A allele presented higher IGFBP-3 SD score levels and higher mean GV in the first year of rhGH treatment than patients with AC or CC genotypes (first year GV, AA = 13.0 +/- 2.1 cm/yr, AC = 11.4 +/- 2.5 cm/yr, and CC = 10.8 +/- 1.9 cm/yr; P = 0.016). Multiple linear regression analyses demonstrated that the influence of -202 A/C IGFBP3 genotype on IGFBP-3 levels and GV during the first year of rhGH treatment was independent of other variables. Conclusion: The -202 A allele of IGFBP3 promoter region is associated with increased IGFBP-3 levels and GV during rhGH treatment in prepubertal GHD children. (J Clin Endocrinol Metab 94: 588-595, 2009)