880 resultados para Institutional differentiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary murine fetal hemopoietic cells were transformed with a fusion protein consisting of the ligand-binding domain of the estrogen receptor and a carboxyl-terminally truncated c-Myb protein (ERMYB), The ERMYB-transformed hemopoietic cells exhibit an immature myeloid phenotype when grown in the presence of beta-estradiol. Upon removal of beta-estradiol, the ERMYB cells display increased adherence, decreased clonogenicity and differentiate to cells exhibiting granulocyte or macrophage morphology, The expression of the c-myc, c-kit, cdc2 and bcl-2 genes, which are putatively regulated by Myb, was investigated in ERMYB cells grown in the presence or absence of beta-estradiol. Neither c-myc nor cdc2 expression was down-regulated after removal of beta-estradiol demonstrating that differentiation is not a consequence of decreased transactivation of these genes by ERMYB. While bcl-2 expression was reduced by 50% in ERMYB cells grown in the absence of beta-estradiol, there was no increase in DNA laddering, suggesting that Myb was not protecting ERMYB cells from apoptosis, In contrast, a substantial (200-fold) decrease in c-kit mRNA level was observed following differentiation of ERMYB cells, and c-kit mRNA could be partially re-induced by the re-addition of beta-estradiol. Furthermore, a reporter construct containing the c-kit promoter was activated when cotransfected with a Myb expression vector, providing further evidence of a role for Myb in the regulation of c-kit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to CAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by CAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs` differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile nasopharingeal angiofibroma (JNA) is a histologically benign locally aggressive tumor characterized by irregular vessels embedded. in a fibrous stroma. Excessive vascularity results in bleeding complications, and the inhibition of angiogenesis is a promising strategy for managing extensive JNA tumors. To better characterize the endothelial components of JNA, we aimed to evaluate markers of vascular differentiation and proliferation, such as friend leukemia integration-1 (FLI-1) and endoglin, lymphatic markers, including podoplanin and vascular endothelial growth factor receptor 3 (VEGFR3) and its cognate ligand VEGFC, GLUT-1, a diagnostic marker that discriminates between hemangiomas and vascular malformations, and two markers of tissue remodeling, stromelysin 3 (ST3) and secreted acid protein rich in cysteine (SPARC). Antigens were assessed immunohistochemically in vessels and stromal cells of JNA archival cases (n=22). JNA endothelial cells were positive for endoglin, VEGFC and FLI-1, whereas podoplanin and VEGFR3 were negative in all cases. Both endothelial cells and fibroblasts stained for ST3 and SPARC. GLUT-1 was investigated in JNA cases, in infantile hemangiomas (n=123) and in vascular malformations (n=135) as controls. JNAs and vascular malformations were GLUT-1-negative, while hemangiomas showed positive staining. The presence of markers of endothelial differentiation and proliferation highlighted the hyper-proliferative state of JNA vessels. The absence of podoplanin and VEGFR3 underscores their blood endothelial cell characteristic. The absence of GLUT-1 discriminates JNAs from hemangiomas. ST3 and SPARC up-regulation in endothelial cells and fibroblasts may contribute to a compensatory signaling for controlling angiogenesis. Some of these markers may eventually serve as therapeutic targets. Our results may aid in the understanding of JNA pathophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Oncologic outcomes in men with radiation-recurrent prostate cancer (PCa) treated with salvage radical prostatectomy (SRP) are poorly defined. Objective: To identify predictors of biochemical recurrence (BCR), metastasis, and death following SRP to help select patients who may benefit from SRP. Design, setting, and participants: This is a retrospective, international, multi-institutional cohort analysis. There was amedian follow-up of 4.4 yr following SRP performed on 404 men with radiation-recurrent PCa from 1985 to 2009 in tertiary centers. Intervention: Open SRP. Measurements: BCR after SRP was defined as a serum prostate-specific antigen (PSA) >= 0.1 or >= 0.2 ng/ml (depending on the institution). Secondary end points included progression to metastasis and cancerspecific death. Results and limitations: Median age at SRP was 65 yr of age, and median pre-SRP PSA was 4.5 ng/ml. Following SRP, 195 patients experienced BCR, 64 developed metastases, and 40 died from PCa. At 10 yr after SRP, BCR-free survival, metastasis-free survival, and cancer-specific survival (CSS) probabilities were 37% (95% confidence interval [CI], 31-43), 77% (95% CI, 71-82), and 83% (95% CI, 76-88), respectively. On preoperative multivariable analysis, pre-SRP PSA and Gleason score at postradiation prostate biopsy predicted BCR (p = 0.022; global p < 0.001) and metastasis (p = 0.022; global p < 0.001). On postoperative multivariable analysis, pre-SRP PSA and pathologic Gleason score at SRP predicted BCR (p = 0.014; global p < 0.001) and metastasis (p < 0.001; global p < 0.001). Lymph node involvement (LNI) also predicted metastasis (p = 0.017). The main limitations of this study are its retrospective design and the follow-up period. Conclusions: In a select group of patients who underwent SRP for radiation-recurrent PCa, freedom from clinical metastasis was observed in > 75% of patients 10 yr after surgery. Patients with lower pre-SRP PSA levels and lower postradiation prostate biopsy Gleason score have the highest probability of cure from SRP. (C) 2011 European Association of Urology. Published by Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields alpha-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at 1 week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at 1 week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields a-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at I week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at I week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cadherins and integrins are important for maintenance of tissue integrity and in signal transduction during skin development. Distribution of these molecules in human skin development was investigated and associated with markers of differentiation, cytokeratins (CK) and involucrin (INV). Methods: Using immunohistochemistry expression of E- and P-cadherins, integrins beta-1 and -4, CK10, CK14 and INV was assessed in skin fragments of 10 human fetuses (gestational weeks ranged from 4 to 24, all weighing up to 500 g). Results: At initial phases of development, integrins beta-1 and -4 and E- and P-cadherins were present on epithelial cell membranes in all layers. CK14 and CK10 were expressed in all epithelial layers and INV weakly detected in the superficial layer. In more advanced stages, integrins were detected in all layers, but a marked polarized expression was seen in basal layer. E-cadherin was detected in all layers, but the cornified stratum and P-cadherin were observed in the lower layers. CK14 was expressed in basal layer, CK10 in suprabasal stratum and INV was observed in cornified layer. Conclusions: Cadherins and integrins are essential for skin development, being spatially and temporally regulated. Their expression is related with the expression of maturation markers of the epidermis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic translation initiation factor 5A (eIF5A) has a unique character: the presence of an unusual amino acid, hypusine, which is formed by post-translational modifications. Even before the identification of hypusination in eIF5A, the correlation between hypusine formation and protein synthesis, shifting cell proliferation rates, had already been observed. Embryogenesis is a complex process in which cellular proliferation and differentiation are intense. In spite of the fact that many studies have described possible functions for eIF5A, its precise role is under investigation, and to date nothing has been reported about its participation in embryonic development. In this study we show that eIF5A is expressed at all mouse embryonic post-implantation stages with increase in eIF5A mRNA and protein expression levels between embryonic days E10.5 and E13.5. Immunohistochemistry revealed the ubiquitous presence of eIF5A in embryonic tissues and organs at E13.5 day. Interestingly, stronger immunoreactivity to eIF5A was observed in the stomodeum, liver, ectoderm, heart, and eye, and the central nervous system; regions which are known to undergo active differentiation at this stage, suggesting a role of eIF5A in differentiation events. Expression analyses of MyoD, a myogenic transcription factor, revealed a significantly higher expression from day E12.5 on, both at the mRNA and the protein levels suggesting a possible correlation to eIF5A. Accordingly, we next evidenced that inhibiting eIF5A hypusination in mouse myoblast C2C12 cells impairs their differentiation into myotubes and decreases MyoD transcript levels. Those results point to a new functional role for eIF5A, relating it to embryogenesis, development, and cell differentiation. J. Cell. Physiol. 225: 500-505, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain excitability diseases like epilepsy constitute one factor that influences brain electrophysiological features. Cortical spreading depression (CSD) is a phenomenon that can be altered by changes in brain excitability. CSD propagation was presently characterized in adult mate and female rats from a normal Wistar strain and from a genetically audiogenic seizure-prone strain, the Wistar audiogenic rat (WAR), both previously submitted (RAS(+)), or not (RAS(-)), to repetitive acoustic stimulation, to provoke audiogenic kindling in the WAR-strain. A gender-specific change in CSD-propagation was found. Compared to seizure-resistant animals, in the RAS- condition, mate and female WARs, respectively, presented CSD-propagation impairment and facilitation, characterized, respectively, by lower and higher propagation velocities (P<0.05). In contraposition, in the RAS(+) condition, mate and female WARs displayed, respectively, higher and tower CSD-propagation rates, as compared to the corresponding controls. In some Wistar and WAR females, we determined estrous cycle status on the day of the CSD-recording as being either estrous or diestrous; no cycle-phase-related differences in CSD-propagation velocities were detected. In contrast to other epilepsy models, such as Status Epilepticus induced by pilocarpine, despite the CSD-velocity reduction, in no case was CSD propagation blocked in WARs. The results suggest a gender-related, estrous cycle-phase-independent modification in the CSD-susceptibility of WAR rats, both in the RAS(+) and RAS(-) situation. (C) 2008 Elsevier B.V. All rights reserved.