952 resultados para Instantaneous angular speed analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper enhances some concepts of the Instantaneous Complex Power Theory by analyzing the analytical expressions for voltages, currents and powers developed on a symmetrical RL three-phase system, during the transient caused by a sinusoidal voltage excitation. The powers delivered to an ideal inductor will be interpreted, allowing a deep insight in the power phenomenon by analyzing the voltages in each element of the circuit. The results can be applied to the understanding of non-linear systems subject to sinusoidal voltage excitation and distorted currents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trying to reduce particle contamination in lubrication systems, industries of the whole world spend millions of dollars each year on the improvement of filtration technology. In this context, by controlling fluid cleanliness, some companies are able to reduce failures rates up to 85 percent. However, in some industries and environments, water is a contaminant more frequently encountered than solid particles, and it is often seen as the primary cause of component failure. Only one percent of water in oil is enough to reduce life expectancy of a journal bearing by 80 percent. For rolling bearing elements, the situation is worse because water destroys the oil film and, under the extreme temperatures and pressures generated in the load zone of a rolling bearing element, free and emulsified water can result in instantaneous flash-vaporization giving origin to erosive wear. This work studies the effect of water as lubricant contaminant in ball bearings, which simulates a situation that could actually occur in real systems. In a designed bench test, three basic lubricants of different viscosities were contaminated with different contents of water. The results regarding oil and vibration analysis are presented for different bearing speeds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated kinematic patterns in clinically normal German Shepherd dogs (GSDs) compared to those with hip dysplasia and with no clinical signs of lameness. Two groups of GSDs, including 10 clinically healthy dogs (G1) and 10 with hip dysplasia (G2), were trotted on a treadmill at a constant speed. Kinematic data were collected by a 3-camera system and analysed by a motion-analysis program. Flexion and extension joint angles and angular velocities were determined for the shoulder, elbow, carpal, hip, stifle, and tarsal joints.Within each group, the differences between the right and left limbs in all kinematic variables were not significant. Minimum angle, angular displacement and minimum angular velocity did not differ between groups. Significant differences were observed in the maximum angular velocity and maximum angle of the hip joint (dysplastic. >. healthy), and in the maximum angular velocity of the carpal joint (healthy. >. dysplastic). It was concluded that, when trotting on a treadmill, dysplastic dogs with no signs of lameness may present joint kinematic alterations in the hind as well as the forelimbs. © 2012 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work quantifies, using ADP and rating curve techniques, the instantaneous outflows at estuarine interfaces: higher to middle estuary and middle to lower estuary, in two medium-sized watersheds (72 000 and 66 000 km(2) of area, respectively), the Jaguaribe and Contas Rivers located in the northeastern (semi-arid) and eastern (tropical humid) Brazilian coasts, respectively. Results from ADP showed that the net water balances show the Contas River as a net water exporter, whereas the Jaguaribe River Estuary is a net water importer. At the Jaguaribe Estuary, water retention during flood tide contributes to 58% of the total volume transferred during the ebb tide from the middle to lower estuary. However, 42% of the total water volume (452 m(3) s(-1)) that entered during flood tide is retained in the middle estuary. In the Contas River, 90% of the total water is retained during the flood tide contributing to the volume transported in the ebb tide from the middle to the lower estuary. Outflows obtained with the rating curve method for the Contas and Jaguaribe Rivers were uniform through time due to river flow normalization by dams in both basins. Estimated outflows with this method are about 65% (Contas) and 95% (Jaguaribe) lower compared to outflows obtained with ADP. This suggests that the outflows obtained with the rating curve method underestimate the net water balance in both systems, particularly in the Jaguaribe River under a semi-arid climate. This underestimation is somewhat decreased due to wetter conditions in the Contas River basin. Copyright. (C) 2011 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents a 5-yr climatology of 7-day back trajectories started from the Northern Hemisphere subtropical jet. These trajectories provide insight into the seasonally and regionally varying angular momentum and potential vorticity characteristics of the air parcels that end up in the subtropical jet. The trajectories reveal preferred pathways of the air parcels that reach the subtropical jet from the tropics and the extratropics and allow estimation of the tropical and extratropical forcing of the subtropical jet. The back trajectories were calculated 7 days back in time and started every 6 h from December 2005 to November 2010 using the Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) dataset as a basis. The trajectories were started from the 345-K isentrope in areas where the wind speed exceeded a seasonally varying threshold and where the wind shear was confined to upper levels. During winter, the South American continent, the Indian Ocean, and the Maritime Continent are preferred areas of ascent into the upper troposphere. From these areas, air parcels follow an anticyclonic pathway into the subtropical jet. During summer, the majority of air parcels ascend over the Himalayas and Southeast Asia. Angular momentum is overall well conserved for trajectories that reach the subtropical jet from the deep tropics. In winter and spring, the hemispheric-mean angular momentum loss amounts to approximately 6%; in summer, it amounts to approximately 18%; and in fall, it amounts to approximately 13%. This seasonal variability is confirmed using an independent potential vorticity–based method to estimate tropical and extratropical forcing of the subtropical jet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A measurement of the B 0 s →J/ψϕ decay parameters, updated to include flavor tagging is reported using 4.9  fb −1 of integrated luminosity collected by the ATLAS detector from s √ =7  TeV pp collisions recorded in 2011 at the LHC. The values measured for the physical parameters are ϕ s 0.12±0.25(stat)±0.05(syst)  rad ΔΓ s 0.053±0.021(stat)±0.010(syst)  ps −1 Γ s 0.677±0.007(stat)±0.004(syst)  ps −1 |A ∥ (0)| 2 0.220±0.008(stat)±0.009(syst) |A 0 (0)| 2 0.529±0.006(stat)±0.012(syst) δ ⊥ =3.89±0.47(stat)±0.11(syst)  rad where the parameter ΔΓ s is constrained to be positive. The S -wave contribution was measured and found to be compatible with zero. Results for ϕ s and ΔΓ s are also presented as 68% and 95% likelihood contours, which show agreement with the Standard Model expectations.