874 resultados para Information theory.
Resumo:
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others
Resumo:
El processament d'imatges mèdiques és una important àrea de recerca. El desenvolupament de noves tècniques que assisteixin i millorin la interpretació visual de les imatges de manera ràpida i precisa és fonamental en entorns clínics reals. La majoria de contribucions d'aquesta tesi són basades en Teoria de la Informació. Aquesta teoria tracta de la transmissió, l'emmagatzemament i el processament d'informació i és usada en camps tals com física, informàtica, matemàtica, estadística, biologia, gràfics per computador, etc. En aquesta tesi, es presenten nombroses eines basades en la Teoria de la Informació que milloren els mètodes existents en l'àrea del processament d'imatges, en particular en els camps del registre i la segmentació d'imatges. Finalment es presenten dues aplicacions especialitzades per l'assessorament mèdic que han estat desenvolupades en el marc d'aquesta tesi.
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.
Resumo:
We consider bipartitions of one-dimensional extended systems whose probability distribution functions describe stationary states of stochastic models. We define estimators of the information shared between the two subsystems. If the correlation length is finite, the estimators stay finite for large system sizes. If the correlation length diverges, so do the estimators. The definition of the estimators is inspired by information theory. We look at several models and compare the behaviors of the estimators in the finite-size scaling limit. Analytical and numerical methods as well as Monte Carlo simulations are used. We show how the finite-size scaling functions change for various phase transitions, including the case where one has conformal invariance.
Resumo:
This paper uses Shannon's information theory to give a quantitative definition of information flow in systems that transform inputs to outputs. For deterministic systems, the definition is shown to specialise to a simpler form when the information source and the known inputs jointly determine the inputs. For this special case, the definition is related to the classical security condition of non-interference and an equivalence is established between non-interference and independence of random variables. Quantitative information flow for deterministic systems is then presented in relational form. With this presentation, it is shown how relational parametricity can be used to derive upper and lower bounds on information flows through families of functions defined in the second order lambda calculus.
Resumo:
Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.
Resumo:
Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.
Resumo:
The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during one-way information reconciliation is flawed and we propose an improved estimate.
Resumo:
In the first part of this work, we show how certain techniques from quantum information theory can be used in order to obtain very sharp embeddings between noncommutative Lp-spaces. Then, we use these estimates to study the classical capacity with restricted assisted entanglement of the quantum erasure channel and the quantum depolarizing channel. In particular, we exactly compute the capacity of the first one and we show that certain nonmultiplicative results hold for the second one.
Resumo:
Photocopy.
Resumo:
Mode of access: Internet.
Resumo:
Photocopy.
Resumo:
Mode of access: Internet.
Resumo:
The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian-Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction.
Resumo:
This Thesis addresses the problem of automated false-positive free detection of epileptic events by the fusion of information extracted from simultaneously recorded electro-encephalographic (EEG) and the electrocardiographic (ECG) time-series. The approach relies on a biomedical case for the coupling of the Brain and Heart systems through the central autonomic network during temporal lobe epileptic events: neurovegetative manifestations associated with temporal lobe epileptic events consist of alterations to the cardiac rhythm. From a neurophysiological perspective, epileptic episodes are characterised by a loss of complexity of the state of the brain. The description of arrhythmias, from a probabilistic perspective, observed during temporal lobe epileptic events and the description of the complexity of the state of the brain, from an information theory perspective, are integrated in a fusion-of-information framework towards temporal lobe epileptic seizure detection. The main contributions of the Thesis include the introduction of a biomedical case for the coupling of the Brain and Heart systems during temporal lobe epileptic seizures, partially reported in the clinical literature; the investigation of measures for the characterisation of ictal events from the EEG time series towards their integration in a fusion-of-knowledge framework; the probabilistic description of arrhythmias observed during temporal lobe epileptic events towards their integration in a fusion-of-knowledge framework; and the investigation of the different levels of the fusion-of-information architecture at which to perform the combination of information extracted from the EEG and ECG time-series. The performance of the method designed in the Thesis for the false-positive free automated detection of epileptic events achieved a false-positives rate of zero on the dataset of long-term recordings used in the Thesis.