841 resultados para Information Retrieval, Weblogs, Decision Support


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contestants are predicted to adjust the cost of a fight in line with the perceived value of the resource and this provides a way of determining whether the resource has been assessed. An assessment of resource value is predicted to alter an animal's motivational state and we note different methods of measuring that state. We provide a categorical framework in which the degree of resource assessment may be evaluated and also note limitations of various approaches. We place studies in six categories: (1) cases of no assessment, (2) cases of internal state such as hunger influencing apparent value, (3) cases of the contestants differing in assessment ability, (4) cases of mutual and equal assessment of value, (5) cases where opponents differ in resource value and (6) cases of particularly complex assessment abilities that involve a comparison of the value of two resources. We examine the extent to which these studies support game theory predictions and suggest future areas of research. (C) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of slurry nutrients to land can be associated with unintended losses to the environment depending on soil and weather conditions. Correct timing of slurry application, however, can increase plant nutrient uptake and reduce losses. A decision support system (DSS), which predicts optimum conditions for slurry spreading based on the Hybrid Soil Moisture Deficit (HSMD) model, was investigated for use as a policy tool. The DSS recommendations were compared to farmer perception of suitable conditions for slurry spreading for three soil drainage classes (well, moderate and poorly drained) to better understand on farm slurry management practices and to identify potential conflict with farmer opinion. Six farmers participated in a survey over two and a half years, during which they completed a daily diary, and their responses were compared to Soil Moisture Deficit (SMD) calculations and weather data recorded by on farm meteorological stations. The perception of land drainage quality differed between farmers and was related to their local knowledge and experience. It was found that the allocation of grass fields to HSMD drainage classes using a visual assessment method aligned farmer perception of drainage at the national scale. Farmer opinion corresponded to the theoretical understanding that slurry should not be applied when the soil is wetter than field capacity, i.e. when drainage can occur. While weather and soil conditions (especially trafficability) were the principal reasons given by farmers not to spread slurry, farm management practices (grazing and silage) and current Nitrates Directive policies (closed winter period for spreading) combined with limited storage capacities were obstacles to utilisation of slurry nutrients. Despite the slightly more restrictive advice of the DSS regarding the number of suitable spreading opportunities, the system has potential to address an information deficit that would help farmers to reduce nutrient losses and optimise plant nutrient uptake by improved slurry management. The DSS advice was in general agreement with the farmers and, therefore, they should not be resistant to adopting the tool for day to day management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To provide in-time reactions to a large volume of surveil- lance data, uncertainty-enabled event reasoning frameworks for CCTV and sensor based intelligent surveillance system have been integrated to model and infer events of interest. However, most of the existing works do not consider decision making under uncertainty which is important for surveillance operators. In this paper, we extend an event reasoning framework for decision support, which enables our framework to predict, rank and alarm threats from multiple heterogeneous sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed Distributed Belief Revision Test-bed — DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate data of the natural conditions and agricultural systems with a good spatial resolution are a key factor to tackle food insecurity in developing countries. A broad variety of approaches exists to achieve precise data and information about agriculture. One system, especially developed for smallholder agriculture in East Africa, is the Farm Management Handbook of Kenya. It was first published in 1982/83 and fully revised in 2012, now containing 7 volumes. The handbooks contain detailed information on climate, soils, suitable crops and soil care based on scientific research results of the last 30 years. The density of facts leads to time consuming extraction of all necessary information. In this study we analyse the user needs and necessary components of a system for decision support for smallholder farming in Kenya based on a geographical information system (GIS). Required data sources were identified, as well as essential functions of the system. We analysed the results of our survey conducted in 2012 and early 2013 among agricultural officers. The monitoring of user needs and the problem of non-adaptability of an agricultural information system on the level of extension officers in Kenya are the central objectives. The outcomes of the survey suggest the establishment of a decision support tool based on already available open source GIS components. The system should include functionalities to show general information for a specific location and should provide precise recommendations about suitable crops and management options to support agricultural guidance on farm level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesis propone un marco de trabajo para el soporte de la toma de decisiones adecuado para soportar la ejecución distribuida de acciones cooperativas en entornos multi-agente dinámicos y complejos. Soporte para la toma de decisiones es un proceso que intenta mejorar la ejecución de la toma de decisiones en escenarios cooperativos. Este proceso ocurre continuamente en la vida diaria. Los humanos, por ejemplo, deben tomar decisiones acerca de que ropa usar, que comida comer, etc. En este sentido, un agente es definido como cualquier cosa que está situada en un entorno y que actúa, basado en su observación, su interpretación y su conocimiento acerca de su situación en tal entorno para lograr una acción en particular.Por lo tanto, para tomar decisiones, los agentes deben considerar el conocimiento que les permita ser consientes en que acciones pueden o no ejecutar. Aquí, tal proceso toma en cuenta tres parámetros de información con la intención de personificar a un agente en un entorno típicamente físico. Así, el mencionado conjunto de información es conocido como ejes de decisión, los cuales deben ser tomados por los agentes para decidir si pueden ejecutar correctamente una tarea propuesta por otro agente o humano. Los agentes, por lo tanto, pueden hacer mejores decisiones considerando y representando apropiadamente tal información. Los ejes de decisión, principalmente basados en: las condiciones ambientales, el conocimiento físico y el valor de confianza del agente, provee a los sistemas multi-agente un confiable razonamiento para alcanzar un factible y exitoso rendimiento cooperativo.Actualmente, muchos investigadores tienden a generar nuevos avances en la tecnología agente para incrementar la inteligencia, autonomía, comunicación y auto-adaptación en escenarios agentes típicamente abierto y distribuidos. En este sentido, esta investigación intenta contribuir en el desarrollo de un nuevo método que impacte tanto en las decisiones individuales como colectivas de los sistemas multi-agente. Por lo tanto, el marco de trabajo propuesto ha sido utilizado para implementar las acciones concretas involucradas en el campo de pruebas del fútbol robótico. Este campo emula los juegos de fútbol real, donde los agentes deben coordinarse, interactuar y cooperar entre ellos para solucionar tareas complejas dentro de un escenario dinámicamente cambiante y competitivo, tanto para manejar el diseño de los requerimientos involucrados en las tareas como para demostrar su efectividad en trabajos colectivos. Es así que los resultados obtenidos tanto en el simulador como en el campo real de experimentación, muestran que el marco de trabajo para el soporte de decisiones propuesto para agentes situados es capaz de mejorar la interacción y la comunicación, reflejando en un adecuad y confiable trabajo en equipo dentro de entornos impredecibles, dinámicos y competitivos. Además, los experimentos y resultados también muestran que la información seleccionada para generar los ejes de decisión para situar a los agentes, es útil cuando tales agentes deben ejecutar una acción o hacer un compromiso en cada momento con la intención de cumplir exitosamente un objetivo colectivo. Finalmente, algunas conclusiones enfatizando las ventajas y utilidades del trabajo propuesto en la mejora del rendimiento colectivo de los sistemas multi-agente en situaciones tales como tareas coordinadas y asignación de tareas son presentadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, companies are living great difficulties on managing their business due to constant and unpredictable economic market fluctuations. Recent changes in market trends (such as the constant demand for new products and services, mass customization and the drastic reduction of delivery time) lead companies to adopt strategies of creating partnerships with other companies as a way to respond effectively to such difficult economical times. Collaborative Networks’ concept born by the consequence of companies could no longer consider their internal business processes’ management as sufficient and tend to seek for a collaborative approach with other partners for their critical processes. Information technologies (ICT) assumed a major role acting as “enablers” of these kinds of networks, enhancing information sharing and business process integration. Several new trends concerning ICT architectures have been created to support collaborative networks requirements, but still doesn’t exist a common platform to reduce the needed integration effort on virtual organizations. This study aims to investigate the current technological solutions available in the market which enhances the management of companies’ business processes (specially, Collaborative Planning). Finally, the research work ends with the presentation of a conceptual model to answer to the constraints evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Johne's disease in cattle is a contagious wasting disease caused by Mycobacterium avium subspecies paratuberculosis (MAP). Johne's infection is characterised by a long subclinical phase and can therefore go undetected for long periods of time during which substantial production losses can occur. The protracted nature of Johne's infection therefore presents a challenge for both veterinarians and farmers when discussing control options due to a paucity of information and limited test performance when screening for the disease. The objectives were to model Johne's control decisions in suckler beef cattle using a decision support approach, thus implying equal focus on ‘end user’ (veterinarian) participation whilst still focusing on the technical disease modelling aspects during the decision support model development. The model shows how Johne's disease is likely to affect a herd over time both in terms of physical and financial impacts. In addition, the model simulates the effect on production from two different Johne's control strategies; herd management measures and test and cull measures. The article also provides and discusses results from a sensitivity analysis to assess the effects on production from improving the currently available test performance. Output from running the model shows that a combination of management improvements to reduce routes of infection and testing and culling to remove infected and infectious animals is likely to be the least-cost control strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consideration of a wide range of plausible crime scenarios during any crime investigation is important to seek convincing evidence and hence to minimize the likelihood of miscarriages of justice. It is equally important for crime investigators to be able to employ effective and efficient evidence-collection strategies that are likely to produce the most conclusive information under limited available resources. An intelligent decision support system that can assist human investigators by automatically constructing plausible scenarios, and reasoning with the likely best investigating actions will clearly be very helpful in addressing these challenging problems. This paper presents a system for creating scenario spaces from given evidence, based on an integrated application of techniques for compositional modelling and Bayesian network-based evidence evaluation. Methods of analysis are also provided by the use of entropy to exploit the synthesized scenario spaces in order to prioritize investigating actions and hypotheses. These theoretical developments are illustrated by realistic examples of serious crime investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making diagnoses in oral pathology are often difficult and confusing in dental practice, especially for the lessexperienced dental student. One of the most promising areas in bioinformatics is computer-aided diagnosis, where a computer system is capable of imitating human reasoning ability and provides diagnoses with an accuracy approaching that of expert professionals. This type of system could be an alternative tool for assisting dental students to overcome the difficulties of the oral pathology learning process. This could allow students to define variables and information, important to improving the decision-making performance. However, no current open data management system has been integrated with an artificial intelligence system in a user-friendly environment. Such a system could also be used as an education tool to help students perform diagnoses. The aim of the present study was to develop and test an open case-based decisionsupport system.Methods: An open decision-support system based on Bayes' theorem connected to a relational database was developed using the C++ programming language. The software was tested in the computerisation of a surgical pathology service and in simulating the diagnosis of 43 known cases of oral bone disease. The simulation was performed after the system was initially filled with data from 401 cases of oral bone disease.Results: the system allowed the authors to construct and to manage a pathology database, and to simulate diagnoses using the variables from the database.Conclusion: Combining a relational database and an open decision-support system in the same user-friendly environment proved effective in simulating diagnoses based on information from an updated database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An intelligent system that emulates human decision behaviour based on visual data acquisition is proposed. The approach is useful in applications where images are used to supply information to specialists who will choose suitable actions. An artificial neural classifier aids a fuzzy decision support system to deal with uncertainty and imprecision present in available information. Advantages of both techniques are exploited complementarily. As an example, this method was applied in automatic focus checking and adjustment in video monitor manufacturing. Copyright © 2005 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The second main cause of death in Brazil is cancer, and according to statistics disclosed by National Cancer Institute from Brazil (INCA) 466,730 new cases of cancer are forecast for 2008. The analysis of tumour tissues of various types and patients' clinical data, genetic profiles, characteristics of diseases and epidemiological data may lead to more precise diagnoses, providing more effective treatments. In this work we present a clinical decision support system for cancer diseases, which manages a relational database containing information relating to the tumour tissue and their location in freezers, patients and medical forms. Furthermore, it is also discussed some problems encountered, as database integration and the adoption of a standard to describe topography and morphology. It is also discussed the dynamic report generation functionality, that shows data in table and graph format, according to the user's configuration. © ACM 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present manuscript is to present the advances performed in medicine using a Personalized Decision Support System (PDSS). The models used in Decision Support Systems (DSS) are examined in combination with Genome Information and Biomarkers to produce personalized result for each individual. The concept of personalize medicine is described in depth and application of PDSS for Cardiovascular Diseases (CVD) and Type-1 Diabetes Mellitus (T1DM) are analyzed. Parameters extracted from genes, biomarkers, nutrition habits, lifestyle and biological measurements feed DSSs, incorporating Artificial Intelligence Modules (AIM), to provide personalized advice, medication and treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a novel vision for further enhanced Internet of Things services. Based on a variety of data (such as location data, ontology-backed search queries, in- and outdoor conditions) the Prometheus framework is intended to support users with helpful recommendations and information preceding a search for context-aware data. Adapted from artificial intelligence concepts, Prometheus proposes user-readjusted answers on umpteen conditions. A number of potential Prometheus framework applications are illustrated. Added value and possible future studies are discussed in the conclusion.