919 resultados para Influenza A virus


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Here we report the codon bias and the mRNA secondary structural features of the hemagglutinin (HA) cleavage site basic amino acid regions of avian influenza virus H5N1 subtypes. We have developed a dynamic extended folding strategy to predict RNA secondar

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pathogenic process of highly pathogenic avian influenza virus (HPAIV) infection is poorly understood. To explore the differential expression of kidney genes as a result of HPAIV infection, two cDNA libraries were constructed from uninfected and infected kidneys by suppression subtractive hybridization (SSH). Fifteen genes including IFN-stimulated genes (ISG12), lymphocyte antigen 6 complex locus E gene (LY6E), matrix Gla protein gene (MGP), lysozyme gene, haemopoiesis related membrane protein I gene, KIAA1259, MGC68696, G6pe-prov protein gene (G6PC), MGC4504, alcohol dehydrogenase gene (ADH), glutathione S-transferase gene (GST), sodium-dependent high-affinity dicarboxylate transporter gene (SDCT), Synaptotagmin XV (SytXV) and two novel genes were found significantly up-regulated or dramatically suppressed. Differential expression of these genes was further identified by Northern blot. Functional analysis indicated that the regulation of their expression might contribute to the pathogenic process of HPAIV infection. In contrast, the increased expression of three IFN-stimulated genes named ISG12, LY6E, and haemopoiesis related membrane protein 1 gene might reflect host defense responses. Further study showed that ISG12 protein failed to directly interact with NS1 protein of HPAIV which expressed simultaneously in the organs where HPAIV replication occurred, by use of BacterioMatch two-hybrid system. Therefore, our findings may provide new insights into understanding the molecular mechanism underlying the pathophysiological process of HPAIV infection in chicken. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel method is reported for the detection of avian influenza virus subtype H5 using a biosensor based on high spatial resolution imaging ellipsometry (IE). Monoclonal antibodies specific to H5 hemagglutinin protein were immobilized on silicon wafers and used to capture virus particles. Resultant changes on the surface of the wafers were visualized directly in gray-scale on an imaging ellipsometry image. This preliminary study has shown that the assay is rapid and specific for the identification of avian influenza virus subtype H5. Compared with lateral-flow immunoassays, this biosensor not only has better sensitivity, but can also simultaneously perform multiplexed tests. These results suggest that this biosensor might be a valuable diagnostic toot for avian influenza virus detection. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a coupling of fluorophore-DNA barcode and bead-based immunoassay for detecting avian influenza virus (AIV) with PCR-like sensitivity is reported. The assay is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representative barcodes. The detection involves the sandwiching of the target AIV between magnetic immunoprobes and barcode-carrying immunoprobes. Because each barcode-carrying immunoprobe is functionalized with a multitude of fluorophore-DNA barcode strands, many DNA barcodes are released for each positive binding event resulting in amplification of the signal. Using an inactivated H16N3 AIV as a model, a linear response over five orders of magnitude was obtained, and the sensitivity of the detection was comparable to conventional RT-PCR. Moreover, the entire detection required less than 2 hr. The results indicate that the method has great potential as an alternative for surveillance of epidemic outbreaks caused by AIV, other viruses and microorganisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we report a coupling of fluorophore-DNA barcode and bead-based
immunoassay for the detection of Avian Influenza Virus (AIV), a potential pandemic threat for human health and enormous economic losses. The detection strategy is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representatively fluorescent barcodes. Despite its simplicity the assay has sensitivity comparable to RT-PCR amplification, and possesses a great potential as a rapid and sensitive on-chip detection format.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Microbiología Médica) UANL

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias con acentuación en Microbiología) UANL, 2014.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New pandemics are a serious threat to the health of the entire world. They are essentially of viral origin and spread at large speed. A meeting on this topic was held in Lyon, France, within the XIXth Jacques Cartier Symposia, a series of France-Québec meetings held every year. New findings on HIV and AIDS, on HCV and chronic hepatitis, and an update on influenza virus and flu were covered during this meeting on December 4 and 5, 2006. Aspects of viral structure, virus-host interactions, antiviral defenses, drugs and vaccinations, and epidemiological aspects were discussed for HIV and HCV. Old and recent data on the flu epidemics ended this meeting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesis (Doctorado en Ciencias con Especialidad en Microbiología Médica) UANL.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze, for the first time, the transcriptional host response of swine tracheal epithelial (NPTr) cells to H1N1 swine influenza virus (swH1N1) infection, S. suis serotype 2 infection and a dual infection, we carried out a comprehensive gene expression profiling using a microarray approach. Results: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone resulted in fewer differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators such as chemokines, interleukins, cell adhesion molecules, and eicosanoids were significantly upregulated in the presence of both pathogens compared to infection with each pathogen individually. This synergy may be the consequence, at least in part, of an increased bacterial adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion: Influenza virus would replicate in the respiratory epithelium and induce an inflammatory infiltrate comprised of mononuclear cells and neutrophils. In a co-infection situation, although these cells would be unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of proinflammatory mediators during a co-infection with influenza virus may be important in the pathogenesis and clinical outcome of S. suis-induced respiratory diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.