927 resultados para Influence area
Resumo:
The way in which metabolic fuels are utilised can alter the expression of behaviour in the interests of regulating energy balance and fuel availability. This is consistent with the notion that the regulation of appetite is a psychobiological process, in which physiological mediators act as drivers of behaviour. The glycogenostatic theory suggests that glycogen availability is central in eliciting negative feedback signals to restore energy homeostasis. Due to its limited storage capacity, carbohydrate availability is tightly regulated and its restoration is a high metabolic priority following depletion. It has been proposed that such depletion may act as a biological cue to stimulate compensatory energy intake in an effort to restore availability. Due to the increased energy demand, aerobic exercise may act as a biological cue to trigger compensatory eating as a result of perturbations to muscle and liver glycogen stores. However, studies manipulating glycogen availability over short-term periods (1-3 days) using exercise, diet or both have often produced equivocal findings. There is limited but growing evidence to suggest that carbohydrate balance is involved in the short-term regulation of food intake, with a negative carbohydrate balance having been shown to predict greater ad libitum feeding. Furthermore, a negative carbohydrate balance has been shown to be predictive of weight gain. However, further research is needed to support these findings as the current research in this area is limited. In addition, the specific neural or hormonal signal through which carbohydrate availability could regulate energy intake is at present unknown. Identification of this signal or pathway is imperative if a casual relationship is to be established. Without this, the possibility remains that the associations found between carbohydrate balance and food intake are incidental.
Resumo:
Microstructural (fabric, forces and composition) changes due to hydrocarbon contamination in a clay soil were studied using Scanning Electron Microscope (micro-fabric analysis), Atomic Force Microscope (forces measurement) and sedimentation bench test (particle size measurements). The non-polluted and polluted glacial till from north-eastern Poland (area of a fuel terminal) were used for the study. Electrostatic repelling forces for the polluted sample were much lower than for the non-polluted sample. In comparison to non-polluted sample, the polluted sample exhibited lower electric charge, attractive forces on approach and strong adhesion on retrieve. The results of the sedimentation tests indicate that clay particles form larger aggregates and settle out of the suspension rapidly in diesel oil. In non-polluted soil, the fabric is strongly aggregated – densely packed, dominate the face-to-face and edge-to-edge types of contacts, clay film tightly adheres to the surface of larger grains and interparticle pores are more common. In polluted soil, the clay matrix is less aggregated – loosely packed, dominate the edge-to-face types of contacts and inter-micro-aggregate pores are more frequent. Substantial differences were observed in the morphometric and geometrical parameters of pore space. The polluted soil micro-fabric proved to be more isotropic and less oriented than in non-polluted soil. The polluted soil, in which electrostatic forces were suppressed by hydrocarbon interaction, displays more open porosity and larger voids than non-polluted soil, which is characterized by occurrence of the strong electrostatic interaction between clay particles.
Resumo:
Individuals, community organisations and industry have always been involved to varying degrees in efforts to address the Queensland road toll. Traditionally, road crash prevention efforts have been led by state and local government organisations. While community and industry groups have sometimes become involved (e.g. Driver Reviver campaign), their efforts have largely been uncoordinated and under-resourced. A common strength of these initiatives lies in the energy, enthusiasm and persistence of community-based efforts. Conversely, a weakness has sometimes been the lack of knowledge, awareness or prioritisation of evidence-based interventions or their capacity to build on collaborative efforts. In 2000, the Queensland University of Technology’s Centre for Accident Research and Road Safety – Queensland (CARRS-Q) identified this issue as an opportunity to bridge practice and research and began acknowledging a selection of these initiatives, in partnership with the RACQ, through the Queensland Road Safety Awards program. After nine years it became apparent there was need to strengthen this connection, with the Centre establishing a Community Engagement Workshop in 2009 as part of the overall Awards program. With an aim of providing community participants opportunities to see, hear and discuss the experiences of others, this event was further developed in 2010, and with the collaboration of the Queensland Department of Transport and Main Roads, the RACQ, Queensland Police Service and Leighton Contractors Pty Ltd, a stand-alone Queensland Road Safety Awards Community Engagement Workshop was held in 2010. Each collaborating organisation recognised a need to mobilise the community through effective information and knowledge sharing, and recognised that learning and discussion can influence lasting behaviour change and action in this often emotive, yet not always evidence-based, area. This free event featured a number of speakers representing successful projects from around Australia and overseas. Attendees were encouraged to interact with the speakers, to ask questions, and most importantly, build connections with other attendees to build a ‘community road safety army’ all working throughout Australia on projects underpinned by evaluated research. The workshop facilitated the integration of research, policy and grass-roots action enhancing the success of community road safety initiatives. For collaboration partners, the event enabled them to transfer their knowledge in an engaged approach, working within a more personal communication process. An analysis of the success factors for this event identified openness to community groups and individuals, relevance of content to local initiatives, generous support with the provision of online materials and ongoing communication with key staff members as critical and supports the view that the university can directly provide both the leadership and the research needed for effective and credible community-based initiatives to address injury and death on the roads.
Resumo:
Strategic communication is held to be a key process by which organisations respond to environmental uncertainty. In the received view articulated in the literatures of organisational communication and public relations, strategic communication results from collaborative efforts by organisational members to create shared understanding about environmental uncertainty and, as a result of this collective understanding, formulate appropriate communication responses. In this study, I explore how such collaborative efforts towards the development of strategic communication are derived from, and bounded by, culturally shared values and assumptions. Study of the influences of an organisation‟s culture on the formulation of strategic communication is a fundamental conceptual challenge for public relations and, to date, a largely unaddressed area of research. This thesis responds to this challenge by describing a key property of organisational culture – the action of cultural selection (Durham, 1992). I integrate this property of cultural selection to extend and refine the descriptive range of Weick‟s (1969, 1979) classic sociocultural model of organizing. From this integration I propose a new model, the Cultural Selection of Strategic Communication (CSSC). Underpinning the CSSC model is the central proposition that because of the action of cultural selection during organizing processes, the inherently conservative properties of an organisation‟s culture constrain development of effective strategic communication in ways that may be unrelated to the outcomes of “environmental scanning” and other monitoring functions heralded by the public relations literature as central to organisational adaptation. Thus, by examining the development of strategic communication, I describe a central conservative influence on the social ecology of organisations. This research also responds to Butschi and Steyn‟s (2006) call for the development of theory focusing on strategic communication as well as Grunig (2006) and Sriramesh‟s (2007) call for research to further understand the role of culture in public relations practice. In keeping with the explorative and descriptive goals of this study, I employ organisational ethnography to examine the influence of cultural selection on the development of strategic communication. In this methodological approach, I use the technique of progressive contextualisation to compare data from two related but distinct cultural settings. This approach provides a range of descriptive opportunities to permit a deeper understanding of the work of cultural selection. Findings of this study propose that culture, operating as a system of shared and socially transmitted social knowledge, acts through the property of cultural selection to influence decision making, and decrease conceptual variation within a group. The findings support the view that strategic communication, as a cultural product derived from the influence of cultural selection, is an essential feature to understand the social ecology of an organisation.
Resumo:
Zeolite-based technology can provide a cost effective solution for stormwater treatment for the removal of toxic heavy metals under increasing demand of safe water from alternative sources. This paper reviews the currently available knowledge relating to the effect of properties of zeolites such as pore size, surface area and Si:Al ratio and the physico-chemical conditions of the system such as pH, temperature, initial metal concentration and zeolite concentration on heavy metal removal performance. The primary aims are, to consolidate available knowledge and identify knowledge gaps. It was established that an in-depth understanding of operational issues such as, diffusion of metal ions into the zeolite pore structure, pore clogging, zeolite surface coverage by particulates in stormwater as well as the effect of pH on stormwater quality in the presence of zeolites is essential for developing a zeolite-based technology for the treatment of polluted stormwater. The optimum zeolite concentration to treat typical volumes of stormwater and initial heavy metal concentrations in stormwater should also be considered as operational issues in this regard. Additionally, leaching of aluminium and sodium ions from the zeolite structure to solution were identified as key issues requiring further research in the effort to develop cost effective solutions for the removal of heavy metals from stormwater.
Resumo:
Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.
Resumo:
This study undertook a physico-chemical characterisation of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e. soy, tallow and canola) at 4 different blend percentages (20%, 40%, 60% and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM10). The chemical properties of particulates were investigated by measuring particle and vapour phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, whilst others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapour phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage, but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles – a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.
Resumo:
This thesis presents the outcomes of a comprehensive research study undertaken to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The knowledge created is expected to contribute to a greater understanding of urban stormwater quality and thereby enhance the design of stormwater quality treatment systems. The research study was undertaken based on selected urban catchments in Gold Coast, Australia. The research methodology included field investigations, laboratory testing, computer modelling and data analysis. Both univariate and multivariate data analysis techniques were used to investigate the influence of rainfall and catchment characteristics on urban stormwater quality. The rainfall characteristics investigated included average rainfall intensity and rainfall duration whilst catchment characteristics included land use, impervious area percentage, urban form and pervious area location. The catchment scale data for the analysis was obtained from four residential catchments, including rainfall-runoff records, drainage network data, stormwater quality data and land use and land cover data. Pollutants build-up samples were collected from twelve road surfaces in residential, commercial and industrial land use areas. The relationships between rainfall characteristics, catchment characteristics and urban stormwater quality were investigated based on residential catchments and then extended to other land uses. Based on the influence rainfall characteristics exert on urban stormwater quality, rainfall events can be classified into three different types, namely, high average intensity-short duration (Type 1), high average intensity-long duration (Type 2) and low average intensity-long duration (Type 3). This provides an innovative approach to conventional modelling which does not commonly relate stormwater quality to rainfall characteristics. Additionally, it was found that the threshold intensity for pollutant wash-off from urban catchments is much less than for rural catchments. High average intensity-short duration rainfall events are cumulatively responsible for the generation of a major fraction of the annual pollutants load compared to the other rainfall event types. Additionally, rainfall events less than 1 year ARI such as 6- month ARI should be considered for treatment design as they generate a significant fraction of the annual runoff volume and by implication a significant fraction of the pollutants load. This implies that stormwater treatment designs based on larger rainfall events would not be feasible in the context of cost-effectiveness, efficiency in treatment performance and possible savings in land area needed. This also suggests that the simulation of long-term continuous rainfall events for stormwater treatment design may not be needed and that event based simulations would be adequate. The investigations into the relationship between catchment characteristics and urban stormwater quality found that other than conventional catchment characteristics such as land use and impervious area percentage, other catchment characteristics such as urban form and pervious area location also play important roles in influencing urban stormwater quality. These outcomes point to the fact that the conventional modelling approach in the design of stormwater quality treatment systems which is commonly based on land use and impervious area percentage would be inadequate. It was also noted that the small uniformly urbanised areas within a larger mixed catchment produce relatively lower variations in stormwater quality and as expected lower runoff volume with the opposite being the case for large mixed use urbanised catchments. Therefore, a decentralised approach to water quality treatment would be more effective rather than an "end-of-pipe" approach. The investigation of pollutants build-up on different land uses showed that pollutant build-up characteristics vary even within the same land use. Therefore, the conventional approach in stormwater quality modelling, which is based solely on land use, may prove to be inappropriate. Industrial land use has relatively higher variability in maximum pollutant build-up, build-up rate and particle size distribution than the other two land uses. However, commercial and residential land uses had relatively higher variations of nutrients and organic carbon build-up. Additionally, it was found that particle size distribution had a relatively higher variability for all three land uses compared to the other build-up parameters. The high variability in particle size distribution for all land uses illustrate the dissimilarities associated with the fine and coarse particle size fractions even within the same land use and hence the variations in stormwater quality in relation to pollutants adsorbing to different sizes of particles.
Resumo:
The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies - thermally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 μm. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: We investigated the interaction between adapting field size and luminance on pupil diameter when cones alone (photopic) or rods and cones (mesopic) were active. Method: Circular achromatic targets (1o to 24o diameter) were presented to eight young participants on a rectangular projector screen. The accommodative influence on pupil diameter was minimized using cycloplegia in the fixing right eye and the consensual pupil reflex was measured in the left eye. Target luminance was adjusted for each stimulus such that corneal flux density (product of field area and luminance) was constant at 3600 cd.deg2m-2 (photopic condition) and 1.49 cd.deg2m-2 (mesopic condition). Results: There were no statistically significant effects of adaptive field size on pupil diameter for either condition. Conclusion: If corneal flux density is kept constant, there will be no change in pupil diameter as the size of the stimulus field increases at either mesopic or photopic lighting levels up to at least 24°.
Resumo:
The purpose of the study: The purpose of this study is to investigate the influence of cultural diversity, in a multicultural nursing workforce, on the quality and safety of patient care and the work environment at King Abdul-Aziz Medical City, Riyadh region. Study background: Due to global migration and workforce mobility, to varying degrees, cultural diversity exists in most health services around the world, particularly occurring where the health care workforce is multicultural or where the domestic population comprises minority groups from different cultures speaking different languages. Further complexities occur when countries have a multicultural workforce which is different from the population for whom they care, in addition to the workers being from culturally diverse countries and with different languages. In Saudi Arabia the health system is mainly staffed by expatriate nurses who comprise 67.7% of the total number of nurses. Study design: This research utilised a case study design which incorporated multiple methods including survey, qualitative interviews and document review. Methods: The participant nurses were selected for the survey via a population sampling strategy; 319 nurses returned their completed Safety Climate Survey questionnaires. Descriptive and inferential statistics (Kruskal–Wallis test) were used to analyse survey data. For the qualitative component of the study, a purposive sampling strategy was used; 24 nurses were interviewed using a semi-structured interview technique. The documentary review included KAMC-R policy documents that met the inclusion criteria using a predetermined data abstraction instrument. Content analysis was used to analyse the policy documents data. Results: The data revealed the nurses‘ perceptions of the clinical climate in this multicultural environment is that it was unsafe, with a mean score of 3.9 out of 5. No significant difference was detected between the age groups or years of experience of the nurses and the perception of safety climate in this context; the study did reveal a statistically significant difference between the cultural background categories and the perception of safety climate. The qualitative phase indicated that the nurses within this environment were struggling to achieve cultural competence; consequently, they were having difficulties in meeting the patients‘ cultural and spiritual needs as well as maintaining a high standard of care. The results also indicated that nurses were disempowered in this context. Importantly, there was inadequate support by the organisation to manage the cultural diversity issue and to protect patients from any associated risks, as demonstrated by the policy documents and supported by the nurses‘ experiences. The study also illustrated the limitations of the conceptual framework of cultural competence when tested in this multicultural workforce context. Therefore, this study generated amendments to the model that is suitable to be used in the context of a multicultural nursing workforce. Conclusion: The multicultural nature of this nursing work environment is inherently risky due to the conflicts that arise from the different cultural norms, beliefs, behaviours and languages. Further, there was uncertainty within the multicultural nursing workforce about the clinical and cultural safety of the patient care environment and about the cultural safety of the nursing workforce. The findings of the study contribute important new knowledge to the area of patient and nurse safety in a multicultural environment and contribute theoretical development to the field of cultural competence. Specifically, the findings will inform policy and practice related to patient care in the context of cultural diversity.
Resumo:
OBJECTIVES: To measure the thickness at which primary schoolchildren apply sunscreen on school day mornings and to compare it with the thickness (2.00 mg/cm(2)) at which sunscreen is tested during product development, as well as to investigate how application thickness was influenced by age of the child (school grades 1-7) and by dispenser type (500-mL pump, 125-mL squeeze bottle, or 50-mL roll-on). DESIGN: A crossover quasiexperimental study design comparing 3 sunscreen dispenser types. SETTING: Children aged 5 to 12 years from public primary schools (grades 1-7) in Queensland, Australia. PARTICIPANTS: Children (n=87) and their parents randomly recruited from the enrollment lists of 7 primary schools. Each child provided up to 3 observations (n=258). INTERVENTION: Children applied sunscreen during 3 consecutive school weeks (Monday through Friday) for the first application of the day using a different dispenser each week. MAIN OUTCOME MEASURE: Thickness of sunscreen application (in milligrams per square centimeter). The dispensers were weighed before and after use to calculate the weight of sunscreen applied. This was divided by the coverage area of application (in square centimeters), which was calculated by multiplying the children's body surface area by the percentage of the body covered with sunscreen. RESULTS: Children applied their sunscreen at a median thickness of 0.48 mg/cm(2). Children applied significantly more sunscreen when using the pump (0.75 mg/cm(2)) and the squeeze bottle (0.57 mg/cm(2)) compared with the roll-on (0.22 mg/cm(2)) (P<.001 for both). CONCLUSIONS: Regardless of age, primary schoolchildren apply sunscreen at substantially less than 1.00 mg/cm(2), similar to what has been observed among adults. Some sunscreen dispensers seem to facilitate thicker application than others.
Resumo:
In Australia, speeding remains a substantial contributor to road trauma. The National Road Safety Strategy (2011-2020) highlighted the need to harness community support for current and future speed management strategies. Australia is known for intensive speed camera programs which are both automated and manual, employing covert and overt methods. Recent developments in the area of automated speed enforcement in Australia help to illustrate the important link between community attitudes to speed enforcement and subsequent speed camera policy developments. A perceived lack of community confidence in camera programs prompted reviews in New South Wales and Victoria in 2011 by the jurisdictional Auditor-General. This paper explores automated speed camera enforcement in Australia with particular reference to the findings of these two reports as they relate to the level of public support for and community attitudes towards automated speed enforcement. It also provides comment on the evolving nature of automated speed enforcement according to previously identified controversies and dilemmas associated with speed camera programs.
Resumo:
The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option.
Resumo:
In the decision-making of multi-area ATC (Available Transfer Capacity) in electricity market environment, the existing resources of transmission network should be optimally dispatched and coordinately employed on the premise that the secure system operation is maintained and risk associated is controllable. The non-sequential Monte Carlo simulation is used to determine the ATC probability density distribution of specified areas under the influence of several uncertainty factors, based on which, a coordinated probabilistic optimal decision-making model with the maximal risk benefit as its objective is developed for multi-area ATC. The NSGA-II is applied to calculate the ATC of each area, which considers the risk cost caused by relevant uncertainty factors and the synchronous coordination among areas. The essential characteristics of the developed model and the employed algorithm are illustrated by the example of IEEE 118-bus test system. Simulative result shows that, the risk of multi-area ATC decision-making is influenced by the uncertainties in power system operation and the relative importance degrees of different areas.