895 resultados para Inflammation Mediators


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diabetic patients are more susceptible to infections, and their inflammatory response is impaired. This is restored by insulin treatment. In the present study, we investigated the effect of insulin on LPS-induced signaling pathways and mediators in the lung of diabetic rats. Diabetic male Wistar rats (alloxan, 42 mg/kg i.v., 10 days) and control rats received intratracheal instillation of LPS (750 mu g/0.4 mL) or saline. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU s.c.) 2 h before LPS. After 6 h, bronchoalveolar lavage was performed for the release of mediators, and lung tissue was homogenized for analysis of LPS-induced signaling pathways. Relative to control rats, diabetic rats exhibited a significant reduction in the LPS-induced phosphorylation of extracellular signal-regulated kinase (64%), p38 (70%), protein kinase B (67%), and protein kinase C alpha (57%) and delta (65%) and in the expression of iNOS (32%) and cyclooxygenase 2 (67%) in the lung homogenates. The bronchoalveolar lavage fluid concentrations of NO (47%) and IL-6 (49%) were also reduced in diabetic rats, whereas the cytokine-induced neutrophil chemoattractant 2 (CINC-2) levels were increased 23%, and CINC-1 was not different from control animals. Treatment of diabetic rats with insulin completely or partially restored all these parameters. In conclusion, data presented show that insulin regulates mitogen-activated protein kinase, phosphatidylinositol 3`-kinase, protein kinase C pathways, expression of the inducible enzymes, cyclooxygenase 2 and iNOS, and levels of IL-6 and CINC-2 in LPS-induced lung inflammation in diabetic rats. These results suggest that the protective effect of insulin in sepsis could be due to modulation of cellular signal transduction factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. CRP is currently one of the best markers of inflammatory disease and disease activity. One of the keys cells involved in inflammation within chronic inflammatory diseases is the monocyte. Monocytes are able to modulate inflammation through cytokine expression, cytosolic peroxide formation, adhesion molecule expression and subsequent adhesion/migration to sites of inflammation. CRP has been previously shown to bind directly to monocytes through Fc receptors. However this observation is not conclusive and requires further investigation. The effects of incubation of CRP with human primary and monocytic cell lines were examined using monocytic cytokine expression, adhesion molecule expression and adhesion to endothelial cells and intracellular peroxide formation, as end points. Monocytic intracellular signalling events were investigated after interaction of CRP with specific CRP receptors on monocytes. These initial signalling events were examined for their role in modulating monocytic adhesion molecule and cytokine expression. Monocyte recruitment and retention in the vasculature is also influenced by oxidative stress. Therefore the effect of 6 weeks of antioxidant intervention in vivo was examined on monocytic adhesion molecule expression, adhesion to endothelial cells ex vivo and on serum CRP concentrations, pre- and post- supplementation with the antioxidants vitamin C and vitaInin E. In summary, CRP is able to bind FcγRIIa. CRP binding FcγR initiates an intracellular signalling cascade that phosphorylates the non-receptor tyrosine kinase, Syk, associated with intracellular tyrosine activating motifs on the cytoplasmic tail of Fcγ receptors. CRP incubations increased phosphatidyl inositol turnover and Syk phosphorylation ultimately lead to Ca2+ mobilisation in monocytes. CRP mediated Syk phosphorylation in monocytes leads to an increase in CD 11b and IL-6 expression. CRP engagement with monocytes also leads to an increase in peroxide production, which can be inhibited in vitro using the antioxidants α-tocopherol and ascorbic acid. CRP mediated CD 11b expression is not redox regulated by CRP mediated changes in cytosolic peroxides. The FcyRIla polymorphism at codon 131 effects the phenotypic driven changes described in monocytes by CRP, where R/R allotypes have a greater increase in CD11b, in response to CRP, which may be involved in promoting the monocytic inflammatory response. CRP leads to an increase in the expression of pro-inflammatory cytokines, which alters the immune phenotype of circulating monocytes. Vitamin C supplementation reduced monocytic adhesion to endothelial cells, but had no effect on serum levels of CRP. Where long-term antioxidant intervention may provide benefit from the risk of developing vascular inflammatory disease, by reducing monocytic adhesion to the vasculature. In conclusion CRP appears to be much more than just a marker of ongoing inflammation or associated inflammatory disease and disease activity. This data suggests that at pathophysiological concentrations, CRP may be able to directly modulate inflammation through interacting with monocytes and thereby alter the inflammatory response associated with vascular inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung hyperinflation up to vital capacity is used to re-expand collapsed lung areas and to improve gas exchange during general anesthesia. However, it may induce inflammation in normal lungs. The objective of this study was to evaluate the effects of a lung hyperinflation maneuver (LHM) on plasma cytokine release in 10 healthy subjects (age: 26.1 ± 1.2 years, BMI: 23.8 ± 3.6 kg/m²). LHM was performed applying continuous positive airway pressure (CPAP) with a face mask, increased by 3-cmH2O steps up to 20 cmH2O every 5 breaths. At CPAP 20 cmH2O, an inspiratory pressure of 20 cmH2O above CPAP was applied, reaching an airway pressure of 40 cmH2O for 10 breaths. CPAP was then decreased stepwise. Blood samples were collected before and 2 and 12 h after LHM. TNF-α, IL-1β, IL-6, IL-8, IL-10, and IL-12 were measured by flow cytometry. Lung hyperinflation significantly increased (P < 0.05) all measured cytokines (TNF-α: 1.2 ± 3.8 vs 6.4 ± 8.6 pg/mL; IL-1β: 4.9 ± 15.6 vs 22.4 ± 28.4 pg/mL; IL-6: 1.4 ± 3.3 vs 6.5 ± 5.6 pg/mL; IL-8: 13.2 ± 8.8 vs 33.4 ± 26.4 pg/mL; IL-10: 3.3 ± 3.3 vs 7.7 ± 6.5 pg/mL, and IL-12: 3.1 ± 7.9 vs 9 ± 11.4 pg/mL), which returned to basal levels 12 h later. A significant correlation was found between changes in pro- (IL-6) and anti-inflammatory (IL-10) cytokines (r = 0.89, P = 0.004). LHM-induced lung stretching was associated with an early inflammatory response in healthy spontaneously breathing subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Fluctuations of estradiol and progesterone levels caused by the menstrual cycle worsen asthma symptoms. Conflicting data are reported in literature regarding pro and anti-inflammatory properties of estradiol and progesterone. Methods: Female Wistar rats were ovalbumin (OVA) sensitized 1 day after resection of the ovaries (OVx). Control group consisted of sensitized-rats with intact ovaries (Sham-OVx). Allergic challenge was performed by aerosol (OVA 1%, 15 min) two weeks later. Twenty four hours after challenge, BAL, bone marrow and total blood cells were counted. Lung tissues were used as explants, for expontaneous cytokine secretion in vitro or for immunostaining of E-selectin. Results: We observed an exacerbated cell recruitment into the lungs of OVx rats, reduced blood leukocytes counting and increased the number of bone marrow cells. Estradiol-treated OVx allergic rats reduced, and those treated with progesterone increased, respectively, the number of cells in the BAL and bone marrow. Lungs of OVx allergic rats significantly increased the E-selectin expression, an effect prevented by estradiol but not by progesterone treatment. Systemically, estradiol treatment increased the number of peripheral blood leukocytes in OVx allergic rats when compared to non treated-OVx allergic rats. Cultured-BAL cells of OVx allergic rats released elevated amounts of LTB(4) and nitrites while bone marrow cells increased the release of TNF-alpha and nitrites. Estradiol treatment of OVx allergic rats was associated with a decreased release of TNF-alpha, IL-10, LTB4 and nitrites by bone marrow cells incubates. In contrast, estradiol caused an increase in IL-10 and NO release by cultured-BAL cells. Progesterone significantly increased TNF-alpha by cultured BAL cells and bone marrow cells. Conclusions: Data presented here suggest that upon hormonal oscillations the immune sensitization might trigger an allergic lung inflammation whose phenotype is under control of estradiol. Our data could contribute to the understanding of the protective role of estradiol in some cases of asthma symptoms in fertile ans post-menopausal women clinically observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared four different intensities of a bench press exercise for muscle soreness, creatine kinase activity, interleukin (IL)-1, IL-6, tumor necrosis factor- (TNF-), and prostaglandin E2 (PGE2) concentrations in the blood. Thirty-five male Brazilian Army soldiers were randomly assigned to one of five groups: 50% one-repetition maximum (1-RM), 75% 1-RM, 90% 1-RM, 110% 1-RM, and a control group that did not perform the exercise. The total volume (setsrepetitionsload) of the exercise was matched among the exercise groups. Muscle soreness and plasma creatine kinase activity increased markedly (P0.05) after exercise, with no significant differences among the groups. Serum PGE2 concentration also increased markedly (P0.05) after exercise, with a significantly (P0.05) greater increase in the 110% 1-RM group compared with the other groups. A weak but significant (P0.05) correlation was found between peak muscle soreness and peak PGE2 concentration, but no significant correlation was evident between peak muscle soreness and peak creatine kinase activity, or peak creatine kinase activity and peak PGE2 concentration. All groups showed no changes in IL-1, IL-6 or TNF-. Our results suggest that the intensity of bench press exercise does not affect the magnitude of muscle soreness and blood markers of muscle damage and inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scorpion envenomation induces a systemic immune response, and neurotoxins of venom act on specific ion channels, modulating neurotransmitter release or activity. However, little is known about the immunomodulatory effects of crude venom from scorpion Tityus serrulatus (TsV) or its toxins (Ts1, Ts2 and Ts6) in combination with lipopolysaccharide (LPS). To investigate the immunomodulatory effects of TsV and its toxins (Ts1, Ts2 and Ts6), J774.1 cells were stimulated with different concentrations (25, 50 and 100 mu g/mL) of venom or toxins pre-stimulated or not with LPS (0.5 mu g/mL). Macrophage cytotoxicity was assessed, and nitric oxide (NO) and cytokine production were analyzed utilizing the culture supernatants. TsV and its toxins did not produce cytotoxic effects. Depending on the concentrations used, TsV, Ts1 and Ts6 stimulated the production of NO, interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha in J774.1 cells, which were enhanced under LPS co-stimulation. However, LPS + Ts2 inhibited NO, IL-6 and TNF-alpha production, and Ts2 alone stimulated the production of IL-10, suggesting an anti-inflammatory activity for this toxin. Our findings are important for the basic understanding of the mechanisms involved in macrophage activation following envenomation: additionally, these findings may contribute to the discovery of new therapeutic compounds to treat immune-mediated diseases. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The course and outcome of infection with mycobacteria are determined by a complex interplay between the immune system of the host and the survival mechanisms developed by the bacilli. Recent data suggest a regulatory role of histamine not only in the innate but also in the adaptive immune response. We used a model of pulmonary Mycobacterium tuberculosis infection in histamine-deficient mice lacking histidine decarboxylase (HDC(-/-)), the histamine-synthesizing enzyme. To confirm that mycobacterial infection induced histamine production, we exposed mice to M. tuberculosis and compared responses in C57BL/6 (wild-type) and HDC(-/-) mice. Histamine levels increased around fivefold above baseline in infected C57BL/6 mice at day 28 of infection, whereas only small amounts were detected in the lungs of infected HDC(-/-) mice. Blocking histamine production decreased both neutrophil influx into lung tissue and the release of proinflammatory mediators, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha), in the acute phase of infection. However, the accumulation and activation of CD4(+) T cells were augmented in the lungs of infected HDC(-/-) mice and correlated with a distinct granuloma formation that contained abundant lymphocytic infiltration and reduced numbers of mycobacteria 28 days after infection. Furthermore, the production of IL-12, gamma interferon, and nitric oxide, as well as CD11c(+) cell influx into the lungs of infected HDC(-/-) mice, was increased. These findings indicate that histamine produced after M. tuberculosis infection may play a regulatory role not only by enhancing the pulmonary neutrophilia and production of IL-6 and TNF-alpha but also by impairing the protective Th1 response, which ultimately restricts mycobacterial growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asthma is characterized by pulmonary cellular infiltration, vascular exudation and airway hyperresponsiveness. Several drugs that modify central nervous system (CNS) activity can modulate the course of asthma. Amphetamine (AMPH) is a highly abused drug that presents potent stimulating effects on the CNS and has been shown to induce behavioral, biochemical and immunological effects. The purpose of this study was to investigate the effects of AMPH on pulmonary cellular influx, vascular permeability and airway reactivity. AMPH effects on adhesion molecule expression, IL-10 and IL-4 release and mast cell degranulation were also studied. Male Wistar rats were sensitized with ovalbumin (OVA) plus alum via subcutaneous injection. One week later, the rats received another injection of OVA-alum (booster). Two weeks after this booster, the rats were subjected to AMPH treatment 12 h prior to the OVA airway challenge. In rats treated with AMPH, the OVA challenge reduced cell recruitment into the lung, the vascular permeability and the cellular expression of ICAM-1 and Mac-1. Additionally, elevated levels of IL-10 and IL-4 were found in samples of lung explants from allergic rats. AMPH treatment, in comparison, increased IL-10 levels but reduced those of IL-4 in the lung explants. Moreover, the tracheal responsiveness to methacholine (MCh), as well as to an in vitro OVA challenge, was reduced by AMPH treatment, and levels of PCA titers were not modified by the drug. Our findings suggest that single AMPH treatment down-regulates several parameters of lung inflammation, such as cellular migration, vascular permeability and tracheal responsiveness. These results also indicate that AMPH actions on allergic lung inflammation include endothelium-leukocyte interaction mechanisms, cytokine release and mast cell degranulation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mice expressing human cholesteryl ester transfer protein (huCETP) are more resistant to Escherichia coli bacterial wall LIPS because death rates 5 days after intraperitoneal inoculation of LIPS were higher in wild-type than in huCETP(+/-) mice, whereas all huCETP(+/+) mice remained alive. After LIPS inoculation, plasma concentrations of TNF-alpha and IL-6 increased less in huCETP(+/+) than in wild-type mice. LPS in vitro elicited lower TNF-alpha production by CETP expressing than by wild-type macrophages. In addition, TNF-alpha production by RAW 264.7 murine macrophages increased on incubation with LPS but decreased in a dose-dependent manner when human CETP was added to the medium. Human CETP in vitro enhanced the LIPS binding to plasma high-density lipoprotein/low-density lipoprotein. The liver uptake of intravenous infused C-14-LPS from Salmonella typhimurium was greater in huCETP(+/+) than in wild-type mice. Present data indicate for the first time that CETP is an endogenous component involved in the first line of defense against an exacerbated production of proinflammatory mediators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1 alpha, TNF-alpha, and leukotriene B-4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE(2). SGE treatments failed to inhibit neutrophil migration and MIP-1 alpha and LTB4 production in IL-10(-/-) mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE(2) release triggered by SGE remained increased in IL-10(-/-) mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4(+) T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE(2) and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE(2)/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO(-/-) mice exhibited reduced inflammation, collagen deposition, and migration of CD4(+), CD8(+), and IFN-gamma-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-alpha, IFN-gamma, and nitric oxide synthase were found in the hearts of 5-LO(-/-) mice. Interestingly, despite of early higher parasitic load, 5-LO(-/-) mice survived, and controlled T cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO(-/-) mice, in which reduced myocarditis protects the animals during T cruzi infection. (c) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low cardiac output syndrome (LCOS) is a common problem following cardiac surgery with cardiopulmonary bypass (CPB) in neonates and infants, and its early recognition remains a challenging task. We aimed to test whether a multimarker approach combining inflammatory and cardiac markers provides complementary information for prediction of LCOS and death in children submitted to cardiac surgery with CPB. Forty-six children younger than 18 months with congenital heart defects were prospectively enrolled. No intervention was made. Blood samples were collected pre-operatively, during CPB and post-operatively (PO) for measurement of interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor (TNF)-alpha, cardiac troponin I (cTnI) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Clinical data and outcome variables were recorded. Logistic regression was used to identify predictors of LCOS and death. Multivariate logistic regression identified pre-operative NT-proBNP and IL-8 4 h PO as independent predictors of LCOS, while cTnI 4 h PO and CPB length were independent predictors of death. The use of inflammatory and cardiac markers in combination improved sensitivity, negative predictive value and accuracy of the models. In conclusion, the combined assessment of inflammatory and cardiac biochemical markers can be useful for identifying young children at increased risk for LCOS and death after heart surgery with CPB. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated the role of kinins, prostaglandins (PGs) and nitric oxide (NO) in mechanical hypernociception, Spontaneous nociception and paw oedema after intraplantar (ipl) injection of Tityus serrulatus venom (Tsv) in male Wistar rats. Tsv was ipl-injected in doses of 0.01-10 mu g/paw. Pre-treatment (30 min prior) with DALBK (100 nmol/paw) and icatibant (10 nmol/paw), B1 and B2 selective kinin receptor antagonists, L-NAME (50 mg/kg, i.p., a non-selective nitric oxide synthase inhibitor) or celecoxib, selective COX-2 inhibitor, was given 1 h prior per os (5 mg/kg, p.o.), significantly reduced the hypernociceptive response (Von Frey method), the spontaneous nociception (determined by counting the number of flinches) and paw oedema (plethysmometer method) induced by Tsv at doses of 1.0 and 10 mu g/paw for both nociceptive and oedematogenic responses, respectively. Nevertheless, indomethacin (5 mg/kg, i.p.. 30 min prior) was ineffective in altering all of these events. The results of the present study show that Tsv, injected ipl into the rat paw, causes a dose-dependent paw oedema, mechanical hypernociception and flinches (a characteristic biphasic response) in which kinins and NO are substantially involved. Although celecoxib was effective against the oedema and pain caused by Tsv, COX-2 does not seem to be involved in the inflammatory response caused by Tsv. (C) 2008 Elsevier Ltd. All rights reserved.