981 resultados para Inflammation -- genetics -- immunology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen sulfide (H2S) is synthesized in the body from L-Cysteine by several enzymes including cystathionine-gamma-lyase (CSE). To date, there is little information about the potential role of H2S in inflammation. We have now investigated the part played by H2S in endotoxin-induced inflammation in the mouse. E. coli lipopolysaccharide (LPS) administration produced a dose (10 and 20 mg/kg ip)- and time (6 and 24 h)-dependent increase in plasma H2S concentration. LPS (10 mg/kg ip, 6 h) increased plasma H2S concentration from 34.1 +/- 0.7 mu M to 40.9 +/- 0.6 mu M (n=6, P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have shown previously that a para-inflammatory response exists at the retinal/choroidal interface in the aging eye; and this response plays an important role in maintaining retinal homeostasis under chronic stress conditions. We hypothesized that dysregulation of the para-inflammatory response may result in an overt pro-inflammatory response inducing retinal degeneration. In this study, we examined this hypothesis in mice deficient in chemokine CCL2 or its cognate receptor CCR2. CCL2- or CCR2-deficient mice developed retinal degenerative changes with age, characterized as retinal pigment epithelial (RPE) cell and photoreceptor cell death. Retinal cell death was associated with significantly more subretinal microglial accumulation and increased complement activation. In addition, monocytes from CCL2- or CCR2-deficient mice had reduced capacity for phagocytosis and chemotaxis, expressed less IL-10 but more iNOS, IL-12 and TNF-a when compared to monocytes from WT mice. Complement activation at the site of RPE cell death resulted in C3b/C3d but not C5b-9 deposition, indicating only partial activation of the complement pathway. Our results suggest that altered monocyte functions may convert the protective para-inflammatory response into an overtly harmful inflammation at the retina/choroidal interface in CCL2- or CCR2-deficient mice, leading to RPE and photoreceptor degeneration. These data support a concept whereby a protective para-inflammatory response relies upon a normally functioning innate immune system. If the innate immune system is deficient chronic stress may tip the balance towards an overt inflammatory response causing cell/tissue damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly alpha-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Serum eosinophilic cationic protein (ECP) concentrations may be useful noninvasive markers of airways inflammation in atopic asthma. However, the usefulness of serum ECP measurement for the prediction of airways inflammation in children with a history of wheezing is unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-alpha-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and L-glycero-D-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-alpha-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-alpha-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NF-kB transcriptional factor plays a key role governing the activation of immune responses. Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by lacking an early in?ammatory response. Recently, we have demonstrated that Klebsiella antagonizes the activation of NF-kB via the deubiquitinase CYLD. In this work, by applying a high-throughput siRNA gain-of-function screen interrogating the human kinome, we identi?ed 17 kinases that when targeted by siRNA restored IL-1b-dependent NF-kB translocation in infected cells. Further characterization revealed that K. pneumoniae activates an EGF receptor (EGFR)- phosphatidylinositol 3-OH kinase (PI3K)–AKT–PAK4–ERK–GSK3b signalling pathway to attenuate the cytokine-dependent nuclear translocation of NF-kB. Our data also revealed that CYLD is a downstream effector of K. pneumoniae-induced EGFR–
PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. Our efforts to identify the bacterial factor(s) responsible for EGFR activation demonstrate that a capsule (CPS) mutant did not activate EGFR hence
suggesting that CPS could mediate the activation of EGFR. Supporting this notion, puri?ed CPS did activate EGFR as well as the EGFR-dependent PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. CPS-mediated EGFR activation was dependent on a TLR4–MyD88–c-SRC-dependent pathway. Several promising drugs have been developed to antagonize this cascade. We propose that agents targeting this signalling pathway might provide selective alternatives for the management of K. pneumoniae pneumonias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asbestos exposure can result in serious and frequently lethal diseases, including malignant mesothelioma. The host sensor for asbestos-induced inflammation is the NLRP3 inflammasome and it is widely assumed that this complex is essential for asbestos-induced cancers. Here, we report that acute interleukin-1β production and recruitment of immune cells into peritoneal cavity were significantly decreased in the NLRP3-deficient mice after the administration of asbestos. However, NLRP3-deficient mice displayed a similar incidence of malignant mesothelioma and survival times as wild-type mice. Thus, early inflammatory reactions triggered by asbestos are NLRP3-dependent, but NLRP3 is not critical in the chronic development of asbestos-induced mesothelioma. Notably, in a two-stage carcinogenesis-induced papilloma model, NLRP3-deficient mice showed a resistance phenotype in two different strain backgrounds, suggesting a tumour-promoting role of NLRP3 in certain chemically-induced cancer types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An acute attack of gout is a paradigm of acute sterile inflammation, as opposed to pyogenic inflammation. Recent studies suggest that the triggering of IL-1beta release from leucocytes lies at the heart of a cascade of processes that involves multiple cytokines and mediators. The NLRP3 inflammasome appears to have a specific role in this regard, but the biochemical events leading to its activation are still not well understood. We review the known mechanisms that underlie the inflammatory process triggered by urate crystals and suggest areas that require further research.