938 resultados para Indebtedness Portuguese families, Multiple Regression Model
Resumo:
Purpose The purpose of this study was to investigate multiple indirect Big Five personality influences on professionals’ annual salary while considering relevant mediators. These are the motivational variables of occupational self-efficacy and career-advancement goals, and the work status variable of contractual work hours. The motivational and work status variables were conceptualized as serial mediators (Big Five → occupational self-efficacy/career-advancement goals → contractual work hours → annual salary). Design/Methodology/Approach We realized a 4 year longitudinal survey study with 432 participants and three points of measurement. We assessed personality prior to the mediators and the mediators prior to annual salary. Findings Results showed that except for openness the other Big Five personality traits exerted indirect influences on annual salary. Career-advancement goals mediated influences of conscientiousness (+), extraversion (+), and agreeableness (−). Occupational self-efficacy mediated influences of neuroticism (–) and conscientiousness (+). Because the influence of occupational self-efficacy on annual salary was fully mediated by contractual work hours, indirect personality influences via occupational self-efficacy always included contractual work hours in a serial mediation. Implications These findings underline the importance of distal personality traits for career success. They give further insights into direct and indirect relationships between personality, goal content, self-efficacy beliefs, and an individual’s career progress. Originality/Value Previous research predominantly investigated direct Big Five influences on salary, and it analyzed cross-sectional data. This study is one of the first to investigate multiple indirect Big Five influences on salary in a longitudinal design. The findings support process-oriented theories of personality influences on career outcomes.
Resumo:
Ordinal outcomes are frequently employed in diagnosis and clinical trials. Clinical trials of Alzheimer's disease (AD) treatments are a case in point using the status of mild, moderate or severe disease as outcome measures. As in many other outcome oriented studies, the disease status may be misclassified. This study estimates the extent of misclassification in an ordinal outcome such as disease status. Also, this study estimates the extent of misclassification of a predictor variable such as genotype status. An ordinal logistic regression model is commonly used to model the relationship between disease status, the effect of treatment, and other predictive factors. A simulation study was done. First, data based on a set of hypothetical parameters and hypothetical rates of misclassification was created. Next, the maximum likelihood method was employed to generate likelihood equations accounting for misclassification. The Nelder-Mead Simplex method was used to solve for the misclassification and model parameters. Finally, this method was applied to an AD dataset to detect the amount of misclassification present. The estimates of the ordinal regression model parameters were close to the hypothetical parameters. β1 was hypothesized at 0.50 and the mean estimate was 0.488, β2 was hypothesized at 0.04 and the mean of the estimates was 0.04. Although the estimates for the rates of misclassification of X1 were not as close as β1 and β2, they validate this method. X 1 0-1 misclassification was hypothesized as 2.98% and the mean of the simulated estimates was 1.54% and, in the best case, the misclassification of k from high to medium was hypothesized at 4.87% and had a sample mean of 3.62%. In the AD dataset, the estimate for the odds ratio of X 1 of having both copies of the APOE 4 allele changed from an estimate of 1.377 to an estimate 1.418, demonstrating that the estimates of the odds ratio changed when the analysis includes adjustment for misclassification. ^
Resumo:
Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^
Resumo:
The standard analyses of survival data involve the assumption that survival and censoring are independent. When censoring and survival are related, the phenomenon is known as informative censoring. This paper examines the effects of an informative censoring assumption on the hazard function and the estimated hazard ratio provided by the Cox model.^ The limiting factor in all analyses of informative censoring is the problem of non-identifiability. Non-identifiability implies that it is impossible to distinguish a situation in which censoring and death are independent from one in which there is dependence. However, it is possible that informative censoring occurs. Examination of the literature indicates how others have approached the problem and covers the relevant theoretical background.^ Three models are examined in detail. The first model uses conditionally independent marginal hazards to obtain the unconditional survival function and hazards. The second model is based on the Gumbel Type A method for combining independent marginal distributions into bivariate distributions using a dependency parameter. Finally, a formulation based on a compartmental model is presented and its results described. For the latter two approaches, the resulting hazard is used in the Cox model in a simulation study.^ The unconditional survival distribution formed from the first model involves dependency, but the crude hazard resulting from this unconditional distribution is identical to the marginal hazard, and inferences based on the hazard are valid. The hazard ratios formed from two distributions following the Gumbel Type A model are biased by a factor dependent on the amount of censoring in the two populations and the strength of the dependency of death and censoring in the two populations. The Cox model estimates this biased hazard ratio. In general, the hazard resulting from the compartmental model is not constant, even if the individual marginal hazards are constant, unless censoring is non-informative. The hazard ratio tends to a specific limit.^ Methods of evaluating situations in which informative censoring is present are described, and the relative utility of the three models examined is discussed. ^
Resumo:
In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^
Resumo:
The problem of analyzing data with updated measurements in the time-dependent proportional hazards model arises frequently in practice. One available option is to reduce the number of intervals (or updated measurements) to be included in the Cox regression model. We empirically investigated the bias of the estimator of the time-dependent covariate while varying the effect of failure rate, sample size, true values of the parameters and the number of intervals. We also evaluated how often a time-dependent covariate needs to be collected and assessed the effect of sample size and failure rate on the power of testing a time-dependent effect.^ A time-dependent proportional hazards model with two binary covariates was considered. The time axis was partitioned into k intervals. The baseline hazard was assumed to be 1 so that the failure times were exponentially distributed in the ith interval. A type II censoring model was adopted to characterize the failure rate. The factors of interest were sample size (500, 1000), type II censoring with failure rates of 0.05, 0.10, and 0.20, and three values for each of the non-time-dependent and time-dependent covariates (1/4,1/2,3/4).^ The mean of the bias of the estimator of the coefficient of the time-dependent covariate decreased as sample size and number of intervals increased whereas the mean of the bias increased as failure rate and true values of the covariates increased. The mean of the bias of the estimator of the coefficient was smallest when all of the updated measurements were used in the model compared with two models that used selected measurements of the time-dependent covariate. For the model that included all the measurements, the coverage rates of the estimator of the coefficient of the time-dependent covariate was in most cases 90% or more except when the failure rate was high (0.20). The power associated with testing a time-dependent effect was highest when all of the measurements of the time-dependent covariate were used. An example from the Systolic Hypertension in the Elderly Program Cooperative Research Group is presented. ^
Resumo:
A research has been carried out in two-lanehighways in the Madrid Region to propose an alternativemodel for the speed-flowrelationship using regular loop data. The model is different in shape and, in some cases, slopes with respect to the contents of Highway Capacity Manual (HCM). A model is proposed for a mountainous area road, something for which the HCM does not provide explicitly a solution. The problem of a mountain road with high flows to access a popular recreational area is discussed, and some solutions are proposed. Up to 7 one-way sections of two-lanehighways have been selected, aiming at covering a significant number of different characteristics, to verify the proposed method the different classes of highways on which the Manual classifies them. In order to enunciate the model and to verify the basic variables of these types of roads a high number of data have been used. The counts were collected in the same way that the Madrid Region Highway Agency performs their counts. A total of 1.471 hours have been collected, in periods of 5 minutes. The models have been verified by means of specific statistical test (R2, T-Student, Durbin-Watson, ANOVA, etc.) and with the diagnostics of the contrast of assumptions (normality, linearity, homoscedasticity and independence). The model proposed for this type of highways with base conditions, can explain the different behaviors as traffic volumes increase, and follows a polynomial multiple regression model of order 3, S shaped. As secondary results of this research, the levels of service and the capacities of this road have been measured with the 2000 HCM methodology, and the results discussed. © 2011 Published by Elsevier Ltd.
Resumo:
The significant gains in export market shares made in a number of vulnerable euro-area crisis countries have not been accompanied by an appropriate improvement in price competitiveness. This paper argues that, under certain conditions, firms consider export activity as a substitute for serving domestic demand. The strength of the link between domestic demand and exports is dependent on capacity constraints. Our econometric model for six euro-area countries suggests domestic demand pressure and capacity-constraint restrictions as additional variables of a properly specified export equation. As an innovation to the literature, we assess the empirical significance through the logistic and the exponential variant of the non-linear smooth transition regression model. We find that domestic demand developments are relevant for the short-run dynamics of exports in particular during more extreme stages of the business cycle. A strong substitutive relationship between domestic and foreign sales can most clearly be found for Spain, Portugal and Italy, providing evidence of the importance of sunk costs and hysteresis in international trade.
Resumo:
Also issued as thesis (M.S.) University of Illinois.
Resumo:
Chiefly tables.
Resumo:
Bibliographical footnotes.
Finite mixture regression model with random effects: application to neonatal hospital length of stay
Resumo:
A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.