946 resultados para Impedance analyzer
Resumo:
Acoustic impedance of a termination, or of a passive subsystem, needs to be measured not only for acoustic lining materials but also in the exhaust systems of flow machinery, where mean flow introduces peculiar problems. Out of the various methods of measurement of acoustic impedance, the discrete frequency, steady state, impedance tube method [1] is most reliable, though time consuming, and requires no special instrumentation.
Resumo:
Need to analyze particles in a flow? This system takes electrical pulses from acoustical or optical sensors and groups them into bands representing ranges of particle sizes.
Resumo:
Bread undergoes several physicochemical changes during storage that results in a rapid loss of freshness. These changes depend on moisture content present in bread product. An instrument based on electrical impedance spectroscopy technique is developed to estimate moisture content of bread at different zones using designed multi-channel ring electrodes. A dedicated AT89S52 microcontroller and associated peripherals are employed for hardware. A constant current is applied across bread loaf through central pair of electrodes and developed potential across different zones of bread loaf are measured using remaining four ring electrode pairs. These measured values of voltage and current are used to measure the impedance at each zone. Electrical impedance behavior of the bread loaf at crust and crumb is investigated during storage. A linear relationship is observed between the measured impedance and moisture content present in crust and crumb of bread loaf during storage of 120 hours.
Resumo:
Need to analyze particles in a flow? This system takes electrical pulses from acoustical or optical sensors and groups them into bands representing ranges of particle sizes.
Resumo:
BACKGROUND: Twenty-two diverse sorghum landraces, classified as normal and opaque types obtained from Ethiopia, were characterised for grain quality parameters using near infra-red spectroscopy (NIRS), chemical and Rapid Visco-Analyzer (RVA) characteristics. RESULTS: Protein content ranged from 77 to 182 g kg-1, and starch content from 514 to 745 g kg(-1). The NIRS analysis indicated the pig faecal digestible energy range from 14.6 to 15.7MJ kg(-1) as fed, and the ileal digestible energy range from 11.3 to 13.9MJ kg(-1) as fed. The normal sorghums had higher digestible energy than the opaque sorghums, which exhibited lower RVA viscosities, and higher pasting temperatures and setback ratios. The RVA parameterswere positively correlated with the starch content and negatively correlated with the protein content. The normal and opaque types formed two distinct groups based on principal component and cluster analyses. CONCLUSION: The landraces were different for the various grain quality parameters with some landraces displaying unique RVA and NIRS profiles. This study will guide utilisation of the sorghum landraces in plant improvement programs, and provides a basis for further studies into how starch and other constituents behave in and affect the properties of these landraces. (C) 2011 Society of Chemical Industry
Resumo:
Among different methods, the transmission-line or the impedance tube method has been most popular for the experimental evaluation of the acoustical impedance of any termination. The current state of method involves extrapolation of the measured data to the reflecting surface or exact locations of the pressure maxima, both of which are known to be rather tricky. The present paper discusses a method which makes use of the positions of the pressure minima and the values of the standing-wave ratio at these points. Lippert's concept of enveloping curves has been extended. The use of Smith or Beranek charts, with their inherent inaccuracy, has been altogether avoided. The existing formulas for the impedance have been corrected. Incidentally, certain other errors in the current literature have also been brought to light.Subject Classification: 85.20.
Resumo:
For the experimental evaluation of the acoustical impedance of a termination by the impedance-tube method at low frequencies, the length of the impedance tube is a problem. In the present paper, the method of exact analysis of standing waves developed by the authors for the stationary medium as well as for mean flow, has been extended for measurement of the acoustical impedance of a termination at low frequencies. The values of the tube attenuation factor and the wave number at the low frequency of interest are established from the experiment conducted, with the given impedance tube, at a higher frequency. Then, exciting the tube at the desired low frequency it is sufficient to measure sound pressure at three differenct locations (not necessarily the minima) in order to evaluate reflection coefficient and hence the impedance of the termination at that frequency.
Resumo:
The transmission-line or the impedance-tube method for the measurement of the acoustic impedance of any termination involves a search for various minima and maxima of pressure. For this purpose, arrangement has to be made for the microphone to travel along the length of the impedance tube, and this complicates the design of the tube considerably. The present paper discusses a method which consists in evaluating the tube attenuation factor at any convenient frequency by making use of measured SPL's at two (or more) fixed locations with a rigid termination, calculating the tube attenuation factor and wave number at the required frequency of interest with or without mean flow (as applicable), and finally evaluating the impedance of the given termination by measuring and using SPL's at three (or more) fixed locations. Thus, the required impedance tube is considerably smaller in length, simpler in design, easier to manufacture, cheaper in cost and more convenient to use. The design of the tube is also discussed. Incidentally, it is also possible to evaluate the impedance at any low frequency without having to use a larger impedance tube.
Resumo:
Optically clear glasses were fabricated by quenching the melt of CaCO3-Bi2O3-B2O3 (in equimolecular ratio). The amorphous and glassy characteristics of the as-quenched samples were confirmed via the X-ray powder diffraction (XRD) and differential scanning calorimetric (DSC) studies These glasses were found to. have high thermal stability parameter (S). The optical transmission studies carried out in the 200-2500 nm wavelength range confirmed both the as-quenched and heat-treated samples to be transparent between 400 nm and 2500 nm. The glass-plates that were heat-treated just above the glass transition temperature (723 K) for 6 h retained approximate to 60% transparency despite having nano-crystallites (approximate to 50-100 nm) of CaBi2B2O7 (CBBO) as confirmed by both the XRD and transmission electron microscopy (TEM) studies. The dielectric properties and impedance characteristics of the as-quenched and heat-treated (723 K/6 h) samples were studied as a function of frequency at different temperatures. Cole-Cole equation was employed to rationalize the impedance data.
Resumo:
A Finite Element Method based forward solver is developed for solving the forward problem of a 2D-Electrical Impedance Tomography. The Method of Weighted Residual technique with a Galerkin approach is used for the FEM formulation of EIT forward problem. The algorithm is written in MatLAB7.0 and the forward problem is studied with a practical biological phantom developed. EIT governing equation is numerically solved to calculate the surface potentials at the phantom boundary for a uniform conductivity. An EIT-phantom is developed with an array of 16 electrodes placed on the inner surface of the phantom tank filled with KCl solution. A sinusoidal current is injected through the current electrodes and the differential potentials across the voltage electrodes are measured. Measured data is compared with the differential potential calculated for known current and solution conductivity. Comparing measured voltage with the calculated data it is attempted to find the sources of errors to improve data quality for better image reconstruction.
Resumo:
The ferroelectric Pb(Zr0.48Ti0.52)O-3 (PZT) thin films prepared by the pulsed laser deposition technique were studied for their response to high energy lithium ion irradiation through impedance spectroscopy. The Debye peaks, observed in the impedance and modulus plots of irradiatedfilms, shifts towards higher frequencies compared to those of unirradiated films. This is equivalent to the trend observed with increase in temperature in the unirradiated films due to the dielectric relaxation. The irradiated films showed a decrease in the grain resistance compared to the unirradiated films. The activation energy of dielectric relaxation increases from 1.25 eV of unirradiated film to 1.62 eV of irradiated film. The observed modifications in the irradiated film were ascribed to the modifications in the grain structure due to the high value of electronic energy loss.
Resumo:
A simple analog instrumentation for Electrical Impedance Tomography is developed and calibrated using the practical phantoms. A constant current injector consisting of a modified Howland voltage controlled current source fed by a voltage controlled oscillator is developed to inject a constant current to the phantom boundary. An instrumentation amplifier, 50 Hz notch filter and a narrow band pass filter are developed and used for signal conditioning. Practical biological phantoms are developed and the forward problem is studied to calibrate the EIT-instrumentation. An array of sixteen stainless steel electrodes is developed and placed inside the phantom tank filled with KCl solution. 1 mA, 50 kHz sinusoidal current is injected at the phantom boundary using adjacent current injection protocol. The differential potentials developed at the voltage electrodes are measured for sixteen current injections. Differential voltage signal is passed through an instrumentation amplifier and a filtering block and measured by a digital multimeter. A forward solver is developed using Finite Element Method in MATLAB7.0 for solving the EIT governing equation. Differential potentials are numerically calculated using the forward solver with a simulated current and bathing solution conductivity. Measured potential data is compared with the differential potentials calculated for calibrating the instrumentation to acquire the voltage data suitable for better image reconstruction.
Resumo:
16-electrode phantoms are developed and studied with a simple instrumentation developed for Electrical Impedance Tomography. An analog instrumentation is developed with a sinusoidal current generator and signal conditioner circuit. Current generator is developed withmodified Howland constant current source fed by a voltage controlled oscillator and the signal conditioner circuit consisting of an instrumentation amplifier and a narrow band pass filter. Electronic hardware is connected to the electrodes through a DIP switch based multiplexer module. Phantoms with different electrode size and position are developed and the EIT forward problem is studied using the forward solver. A low frequency low magnitude sinusoidal current is injected to the surface electrodes surrounding the phantom boundary and the differential potential is measured by a digital multimeter. Comparing measured potential with the simulated data it is intended to reduce the measurement error and an optimum phantom geometry is suggested. Result shows that the common mode electrode reduces the common mode error of the EIT electronics and reduces the error potential in the measured data. Differential potential is reduced up to 67 mV at the voltage electrode pair opposite to the current electrodes. Offset potential is measured and subtracted from the measured data for further correction. It is noticed that the potential data pattern depends on the electrode width and the optimum electrode width is suggested. It is also observed that measured potential becomes acceptable with a 20 mm solution column above and below the electrode array level.
Resumo:
The phenomena of nonlinear I-V behavior and electrical switching find extensive applications in power control, information storage, oscillators, etc. The study of I-V characteristics and switching parameters is necessary for the proper application of switching materials and devices. In the present work, a simple low-cost electrical switching analyzer has been developed for the measurement of the electrical characteristics of switching materials and devices. The system developed consists of a microcontroller-based excitation source and a high-speed data acquisition system. The design details of the excitation source, its interface with the high-speed data acquisition system and personal computer, and the details of the application software developed for automated measurements are described. Typical I-V characteristics and switching curves obtained with the system developed are also presented to illustrate the capability of the instrument developed.
Resumo:
Frequency response analysis is critical in understanding the steady and transient state behavior of any electrical network. Network analyzeror frequency response analyzer is used to determine the frequency response of an electrical network. This paper deals with the design of an inexpensive digitally controlled Network Analyzer. The frequency range of the network analyzer is from 10Hz to 50kHz (suitable range for system studies on most power electronics apparatus). It is composed of a microcontroller (as central processing unit) and a personal computer (as analyzer and display). The communication between the microcontroller and personal computer is established through one of the USB ports. The testing and evaluation of the analyzer is done with RC, RLC and multi-resonant circuits. The design steps, basis of analysis, experimental results, limitation in bandwidth and possible techniques for improvement in performances are presented.