941 resultados para Immunity.
Resumo:
info:eu-repo/semantics/published
Resumo:
Although post-translational modifications of protein antigens may be important componenets of some B cell epitopes, the determinants of T cell immunity are generally nonmodified peptides. Here we show that methylation of the Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA) by the bacterium is essential for effective T cell immunity to this antigen in infected healthy humans and in mice. Methylated HBHA provides high levels of protection against M. tuberculosis challenge in mice, whereas nonmethylated HBHA does not. Protective immunity induced by methylated HBHA is comparable to that afforded by vaccination with bacille Calmette et Guérin, the only available anti-tuberculosis vaccine. Thus, post-translational modifications of proteins may be crucial for their ability to induce protective T cell-mediated immunity against infectious diseases such as tuberculosis.
Measles virus superinfection immunity and receptor redistribution in persistently infected NT2 cells
Resumo:
A recombinant measles virus (MV) expressing red fluorescent protein (MVDsRed1) was used to produce a persistently infected cell line (piNT2-MVDsRed1) from human neural precursor (NT2) cells. A similar cell line (piNT2-MVeGFP) was generated using a virus that expresses enhanced green fluorescent protein. Intracytoplasmic inclusions containing the viral nucleocapsid protein were evident in all cells and viral glycoproteins were present at the cell surface. Nevertheless, the cells did not release infectious virus nor did they fuse to generate syncytia. Uninfected NT2 cells express the MV receptor CD46 uniformly over their surface, whereas CD46 was present in cell surface aggregates in the piNT2 cells. There was no decrease in the overall amount of CD46 in piNT2 compared to NT2 cells. Cell-to-cell fusion was observed when piNT2 cells were overlaid onto confluent monolayers of MV receptor-positive cells, indicating that the viral glycoproteins were correctly folded and processed. Infectious virus was released from the underlying cells, indicating that persistence was not due to gross mutations in the virus genome. Persistently infected cells were superinfected with MV or canine distemper virus and cytopathic effects were not observed. However, mumps virus could readily infect the cells, indicating that superinfection immunity is not caused by general soluble antiviral factors. As MVeGFP and MVDsRed1 are antigenically indistinguishable but phenotypically distinct it was possible to use them to measure the degree of superinfection immunity in the absence of any cytopathic effect. Only small numbers of non-fusing green fluorescent piNT2-MVDsRed1 cells (1 : 300 000) were identified in which superinfecting MVeGFP entered, replicated and expressed its genes.
Resumo:
Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity.
Resumo:
There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.
Resumo:
[No abstract available]
Resumo:
Porcine circovirus type 2 (PCV2) is essential but not sufficient for postweaning multi-systemic wasting syndrome (PMWS) occurrence in pigs. The outcome of PCV2 infection depends on the specific immune responses that are developing during the infection. Diseased pigs are immunosupressed and unable to mount effective immune responses to clear the virus from circulation. In the final stage, PMWS-affected pigs suffer from extensive lymphoid lesions and altered cytokine expression patterns in peripheral blood mononuclear cells (PBMCs) and lymphoid organs. PCV2 infection can also be asymptomatic, demonstrating that not every infection will guarantee the occurrence of severe immunopathological disturbances. Asymptomatic animals have higher virus specific and neutralising antibody titres than PMWS-affected animals. Recent results have pointed out that the mechanisms by which PCV2 can affect the immune responses involve the induction of IL-10, virus accumulation into and modulation of plasmacytoid dendritic cells and the role of viral DNA in regulation of immune cell functions. Fourteen years after the first description of PMWS in Canada, efficient commercial vaccines against PCV2 are available. The vaccine success is based on activated humoral and cellular immune responses against PCV2. This review focuses on the recent research on immunological aspects during PCV2 infections and summarizes what is currently known about the vaccine-induced immunity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article analyses the doctrine of State immunity within the context of the recent judgment of the International Court of Justice (ICJ) concerning the Jurisdictional Immunities of the State (Germany v Italy: Greece intervening). The object of this article is to explore the implications of the State immunity from foreign judicial proceedings in cases of jus cogens crimes. Challenging the assumption that the law of immunity is merely procedural in nature, this article argues that there can be no immunity in cases of undisputed international crimes.
Resumo:
An in vivo method of assessing the competence of the cell-mediated immune system (Multitest CMI) was used in 200 healthy volunteers (age range 17-88 years). The profile of reactivity to seven individual antigens was determined. A positive reaction was obtained in 96.5% of the subjects who reacted positively to at least one antigen with 78% reacting to two or more antigens. The number of positive responses and the degree of reactivity was significantly reduced in elderly subjects and in females aged 17-65 years. The Multitest CMI system provides a rapid and convenient method of assessing cell-mediated immunity (CMI) in vivo and could have a wide range of applications in the investigation of immunological, infective and neoplastic conditions.